e2V

EV12DS130AGS-EB Evaluation Board

12-bit DAC 3Gsps with 4/2:1 MUX User Guide

Table of Contents

Section 1

Introducti	on 1- ⁻	1
1.1	Scope1-	1
1.2	Description1-	1

Section 2

Hardware	e Description	2-1
2.1	Board Structure	2-1
2.2	Analog Outputs	2-2
2.3	Clock Inputs	2-2
2.4	Digital Inputs	2-3
2.5	SYNC Inputs	2-3
2.6	DSP, DSPN Signals Inputs	2-4
2.7	DSP OUT, DSPN OUT Signals Outputs	2-4
2.8	CALIBRATION Lines	2-5
2.9	IDC Inputs	2-5
2.10	Power Supplies	2-6

Section 3

Operating	Characteristics	3-1
3.1	Introduction	3-1
3.2	Operating Procedure	3-1
3.3	Electrical Characteristics	3-3

Section 4

Software	Tools	
4.1	Overview	4-1
4.2	Configuration	4-1
4.3	Getting Started	4-1
	Troubleshooting	
4.5	Operating Modes	4-7
4.5	.1 Settings	4-8
4.5	.2 Loading	4-10
4.5	.3 Pattern Generator	4-12
4.5	.4 R / W	4-14

i

4.6	Cor	nfiguration and Software of the FPGA Memory	4-14
4.6	.1	PROG FPGA	4-14
4.6	.2	FPGA Configuration with JTAG	4-16
4.6	.3	Configuration of the FPGA on EV12DS130AGS Evaluation Board	4-17
4.6	.4	FPGA Block Diagram	4-19

Section 5

Applicatio	on Information	5-1
5.1	Analog Outputs	5-1
5.2	Clock Inputs	5-2
5.3	SYNC Inputs	5-2
5.4	Input Data	5-2
5.5	Diode for Junction Temperature Monitoring	5-3

Section 6

Ordering Information	1
----------------------	---

Section 7

Appendic	es7-1
7.1	EV12DS130AGS-EB Electrical Schematics
7.2	EV12DS130AGS-EB Board Layers7-4

ii

e2v

Section 1

1.1 Scope

The EV12DS130AGS-EB evaluation board is designed to facilitate the evaluation and characterization of the EV12DS130A 12-bit DAC with 4/2:1 MUX in fpBGA package.

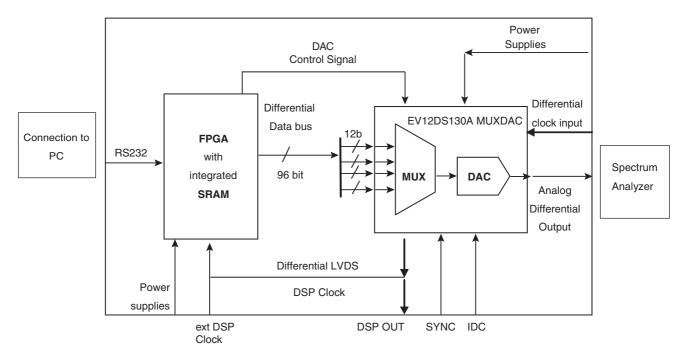
The EV12DS130AGS-EB Evaluation Kit includes:

- One MUXDAC evaluation board
- A cable for connection to the RS-232 port
- One CD-ROM that contains the software Tools necessary to use the SPI

The evaluation system of the EV12DS130A MUXDAC device consists in a configurable printed circuit board, including the soldered MUXDAC device, an FPGA chip, a serial interface and a user interface running on that platform.

This user guide should be read in parrallel with the product datasheet and the relative application note.

1.2 Description The EV12DS130AGS evaluation board is very straightforward as it implements e2v EV12DS130A 12-bit MUXDAC device, ALTERA FPGA STRATIX II EP2S60F672C5N, SMA connectors for the sampling clock, analog outputs and reset inputs accesses.


Thanks to its user-friendly interface, the EV12DS130AGS-EB Kit enables to test all the functions of the EV12DS130A 12-bit MUXDAC.

To achieve optimal performance, the EV12DS130AGS-EB is designed in a 6-metallayer board using RO4003 epoxy dielectric material. The board implements the following devices:

- The EV12DS130A 12-bit MUXDAC evaluation board with the EV12DS130A 12-bit MUXDAC soldered
- SMA connectors for CLK, CLKN, OUT, OUTN, SYNC, SYNCN, IDC_N, IDC_P
- ALTERA FPGA STRATIX II EP2S60F672C5N soldered to generate the logical pattern
- Banana jacks for the power supply accesses, the die junction temperature monitoring functions, reference resistor
- An RS-232 connector for PC interface

The board dimensions are 180 mm x 210 mm. The board comes fully assembled and tested with the EV12DS130A installed.

As shown in Figure 1-1, different power supplies are required:

- V_{CCA5} = 5V analog positive power supply
- V_{CCD} = 3.3V digital positive power supply
- V_{CCA3} = 3.3V analog output power supply
- 5V FPGA

Section 2

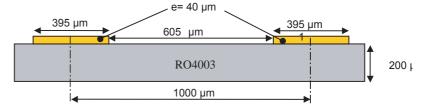
Hardware Description

2.1 Board Structure

In order to achieve optimum full-speed operation of the EV12DS130AGS-EB 12-bit MUXDAC, a multi-layer board structure was retained for the evaluation board. Six copper layers are used, dedicated to the signal traces, ground planes and power supply planes.

The board is made in RO4003 dielectric material. Table 2-1 gives a detailed description of the board's structure.

Layer	Characteristics
	Copper thickness = 40 μ m (with NiAu finish)
Layer 1	AC signals traces = 50Ω microstrip lines
Copper layer	DC signals traces
RO4003/dielectric layer	Layer thickness = 200 μ m
Layer 2	Copper thickness = 18 µm
Copper layer	Ground plane = AGND - DGND plane
FR4/dielectric layer	Layer thickness = $350 \ \mu m$
Layer 3	Copper thickness = 18 µm
Copper layer	Power plane = FPGA supplies, VCCD, VCCA3, signals
FR4/dielectric layer	Layer thickness = $350 \ \mu m$
Layer 4	Copper thickness = 18 µm
Copper layer	Reference plane = ground and power plane
FR4/dielectric layer	Layer thickness = 350 µm
Layer 5	Copper thickness = 18 µm
Copper layer	Power planes = DGND, V_{CCA5} , GA plane
RO4003/dielectric layer	Layer thickness = 200 µm
	Copper thickness = 40 μ m (with NiAu finish)
Layer 6	AC signals traces = 50Ω microstrip lines
Copper layer	DC signals traces


Table 2-1. Board Layer Thickness Profile

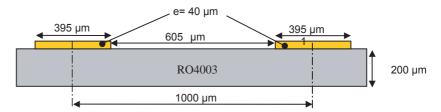
2.2 Analog Outputs The differential analog output is provided by SMA connectors (reference: VITELEC 142-0701-8511). Both pairs are AC coupled using 100 nF capacitors. (Reference ATC545L Series UBC).

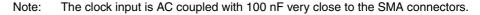
> Special care was taken for the routing of the analog output signal for optimum performance in the high-frequency domain:

- 50 Ω lines matched to ±0.1 mm (in length) between OUT and OUTN
- 605 µm pitch between the differential traces
- 1000 µm between two differential pairs
- 395 µm line width
- 40 µm thickness
- 850 µm diameter hole in the ground layer below the OUT and OUTN ball footprints

Figure 2-1. Board Layout for the Differential Analog and Clock Inputs

Note: The analog output is AC coupled with 100 nF very close to the SMA connectors.

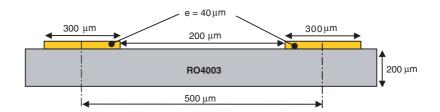

2.3 Clock Inputs


The differential clock inputs is provided by SMA connectors (reference: VITELEC 142-0701-8511). Both pairs are AC coupled using 100 pF capacitors.

Special care was taken for the routing of the clock input signal for optimum performance in the high frequency domain:

- 50Ω lines matched to ±0.1 mm (in length) between CLK and CLKN
- 605 µm pitch between the differential traces
- 1000 µm between two differential pairs
- 395 µm line width
- 40 µm thickness
- 850 µm diameter hole in the ground layer below the CLK and CLKN ball footprints

Figure 2-2. Board Layout for the Differential Analog and Clock Inputs



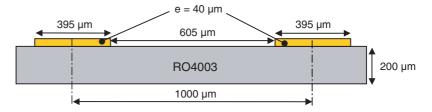
2.4 Digital Inputs

The digital input lines were designed with the following recommendations:

- 50Ω lines matched to ±2.5 mm (in length) between signal of the same differential pair
- ±1 mm line length difference between signals of two differential pairs
- 500 µm pitch between the differential traces
- 650 µm between two differential pairs
- 300 µm line width
- 40 µm thickness

Figure 2-3. Board layout for the Differential Digital Inputs

The digital inputs are compatible with LVDS standard. They are on-chip 100Ω differentially terminated.

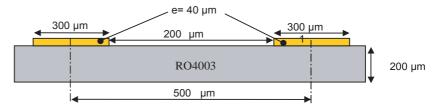

2.5 SYNC Inputs

The hardware reset signals are provided; SYNC, SYNCN corresponds to the reset of the output of the DAC (analog reset).

The differential reset inputs are provided by SMA connectors (Reference: VITELEC 142-0701-8511). The signals are AC coupled using 10 nF capacitors and pulled up and down resistors.

- 50Ω lines matched to ±0.1 mm (in length) between SYNC and SYNCN
- 605 µm pitch between the differential traces
- 1000 µm between two differential pairs
- 395 µm line width
- 40 µm thickness

Figure 2-4. Board Layout for the SYNC Signal

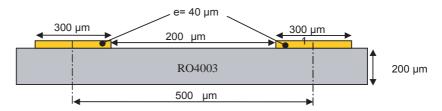


2.6 DSP, DSPN The differential DSP and DSPN signals can be provided by SMA connectors (not Signals Inputs connected).

Special care was taken for the routing of DSP, DSPN signals for optimum performance in the high frequency domain:

- 50Ω lines matched to ±0.1 mm (in length) between DSP and DSPN
- 500 µm pitch between the differential traces
- 650 µm between two differential pairs
- 300 µm line width
- 40 µm thickness

Figure 2-5. Board layout for the DSP signal

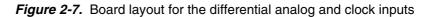

These signals are compatible with LVDS standard. They are on-chip 100Ω differentially terminated. DSP, DSPN are not used for normal operation. They can be left open.

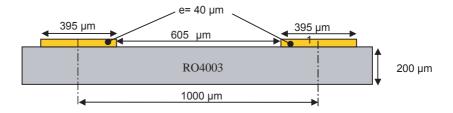
2.7 DSP OUT, DSPN OUT Signals Outputs The differential DSP OUT and DSPN OUT signals can be provided by the SMA connectors (not connected). Special care was taken for the routing of DSP OUT, DSPN OUT signals for optimum

Special care was taken for the routing of DSP OUT, DSPN OUT signals for optimum performance in the high frequency domain:

- 50Ω lines matched to ±0.1 mm (in length) between DSP OUT and DSPN OUT
- 500 µm pitch between the differential traces
- 650 µm between two differential pairs
- 300 µm line width
- 40 µm thickness

Figure 2-6. Board layout for the DSP OUT signal


These signals are compatible with LVDS standard. They are on-chip 100Ω differentially terminated.

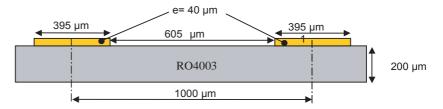

DSP, DSPN are not used for normal operation. They can be left open.

2.8CALIBRATION
LinesBoth pairs are AC coupled using 100 nF capacitors. (Reference ATC545L Series UBC).
Calibration lines have exactly the same length than Analog Outputs.

Special care was taken for the routing of the analog output signal for optimum performance in the high frequency domain:

- 50 Ω lines matched to ±0.1 mm (in length) between CAL and CALN;
- 605 µm pitch between the differential traces;
- 1000 µm between two differential pairs;
- 395 µm line width;
- 40 µm thickness;
- 850 µm diameter hole in the ground layer below the CAL and CALN ball footprints.

Note: The calibration lines are AC coupled with 100 nF very close to the SMA connectors.

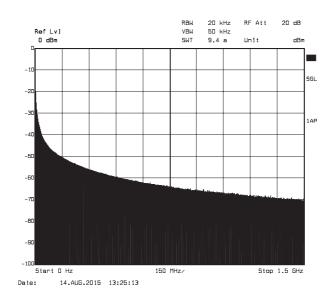

2.9 IDC Inputs

The differential IDC signals are provided by SMA connectors. (reference: VITELEC 142-0701-8511).

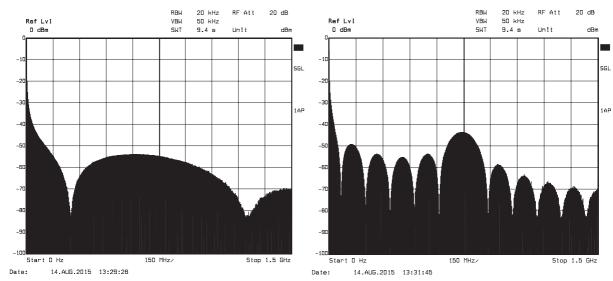
The signals are AC coupled using 10 nF capacitors.

- 50Ω lines matched to ±0.1 mm (in length) between SYNC and SYNCN
- 605 µm pitch between the differential traces;
- 1000 µm between two differential pairs;
- 395 µm line width;
- 40 µm thickness;

Figure 2-8. Board Layout for the IDC signal


2.10	Power Supplies	Layers 3, 4 and 5 are dedicated to power supply planes (V_{CCA3} , V_{CCD} , V_{CCA5} , 5V FPGA).
		The supply traces are low impedance and are surrounded by two ground planes (layer 2 and 5).
		Each incoming power supply is bypassed at the banana jack by a 1 μ F Tantalum capacitor in parallel with a 100 nF chip capacitor. Each power supply is decoupled as close as possible to the EV12DS130A device by 10 nF in parallel with 100 pF surface mount chip capacitors.

Section 3


Operating Characteristics

Introduction	This section describes a typical configuration for operating the evaluation board of the EV12DS130A 12-bit MUXDAC. The analog output signal and the sampling clock signal should be in a differential fashion.					
	Note : The analog outputs and clock inputs are AC coupled on the board.					
Operating	1. Install the SPI software as described in section 4 "Software Tools".					
Procedure	 Connect the power supplies and ground accesses through the dedicated banana jacks. 					
	V_{CCA3} = 3.3V, V_{CCD} = 3.3V, V_{CCA5} = 5V and for the FPGA +5V					
	 Connect the clock input signals. The clock input level is typically 3 dB to 10 dBm and should not exceed 12 dBm (into 50Ω). 					
	 Connect the analog output signals to a spectrum analyzer (the board has been designed to allow only AC coupled analog outputs). The analog output signals must be used in differential via differential-to-single transformer. 					
	5. Connect the PC's RS-232 connector to the Evaluation Board's serial interface.					
	6. Switch on the DAC power supplies : See section 3.2 and 7.9 of the datasheet					
	7. Turn on the RF clock generator.					
	8. Switch on the FPGA power supply (+5V)					
	 Launch the software, (the software must be launched with the evaluation board powered on). 					
	10. Launch software. (software must be lunch with evaluation board power ON).					
	The EV12DS130AGS-EB evaluation board is now ready for operation.					
	Note: To use the software, you should be in Administrator mode.					
	The following graph shows a good synchronization.					

Figure 3-1.

If you have not ramp (cf: graphs below) on the output, push reset board.

Figure 3-2.

3.3 Electrical For more information, please refer to the device datasheet. See section 3.2 of the datasheet.

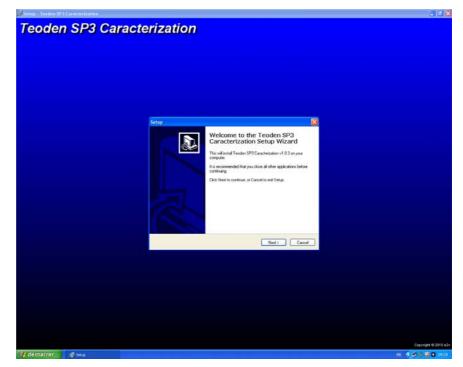
Table 3-1. Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
RESOLUTION			12		bit	
ESD CLASSIFICATION			Class 1B			
POWER REQUIREMENTS						
Power Supply voltage						
- Analogue	V _{CCA5}	4.75	5	5.25	V	
- Analogue	V _{CCA3}	3.15	3.3	3.45	V	
- Digital	V _{CCD}	3.15	3.3	3.45		
Power Supply current (4:1 MUX)						
- Analogue	I _{CCA5}			95	mA	
- Analogue	I _{CCA3}			110	mA	
- Digital	I _{CCD}			200	mA	
Power Supply current (2:1 MUX)						
- Analogue	I _{CCA5}			95	mA	
- Analogue	I _{CCA3}			110	mA	
- Digital	I _{CCD}			170	mA	
Power dissipation (4:1 MUX)	P _D		1.33		W	
Power dissipation (2:1 MUX)	P _D		1.25		W	

Operating Characteristics

EV12DS130AGS-EB User Guide

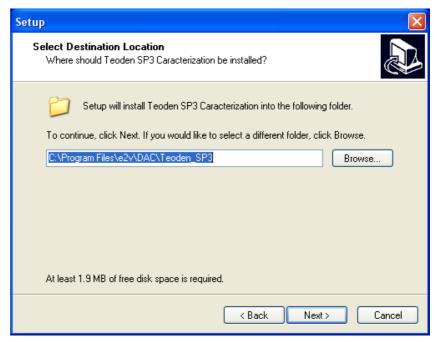
e2v


Section 4

Software Tools

4.1	Overview	The MUXDAC 12-bit evaluation user interface software is a Visual C++ compiled graph- ical interface that does not require a licence to run on a Windows NT and Window 2000/XP PC.
		The software uses intuitive push-buttons and pop-up menus to write data from the hardware.
4.2	Configuration	The advised configuration for Windows 98 is:
		PC with Intel Pentium Microprocessor of over 100 MHz
		Memory of at least 24 Mo.
		For other versions of Windows OS, use the recommended configuration from Microsoft.
		Note: Two COM ports are necessary to use two boards simultaneously.
4.3	Getting Started	 Install the 12-bit MUXDAC application on your computer by launching the Setup_TeodenSP3 Carac.exe installer (please refer to the latest version available).

The screen shown in Figure 4-1 is displayed:


Figure 4-1. Application Setup Wizard Window

Note: "Teoden" is a nickname of EV12DS130A used in e2v.

2. Select Destination Directory

Figure 4-2. Select Destination Directory Window

3. Select Start Menu Folder

Figure 4-3. Select Start Menu Window

Setup 🔀
Select Start Menu Folder Where should Setup place the program's shortcuts?
Setup will create the program's shortcuts in the following Start Menu folder.
To continue, click Next. If you would like to select a different folder, click Browse.
< Back Next > Cancel

Setup 🔀
Select Additional Tasks Which additional tasks should be performed?
Select the additional tasks you would like Setup to perform while installing Teoden SP3 Caracterization, then click Next. Additional icons: In Create a desktop icon
<pre></pre>

4. Ready to install

Figure 4-4. Ready to Install Window

Setup	×
Ready to Install Setup is now ready to begin installing Teoden SP3 Caracterization on your computer.	ß
Click Install to continue with the installation, or click Back if you want to review or change any settings.	
Destination location: C:\Program Files\e2v\DAC\Teoden_SP3	
Start Menu folder: e2v\DAC	
Additional tasks: Additional icons: Create a desktop icon	
< Back Install Cance	el

If you agree with the install configuration, press Install.

The installation of the software is now completed.

Note: If a problem appears at the end of the installation, please install the setup vcredist_x86.exe available in the "My program dependencies" file of the CD.

Install

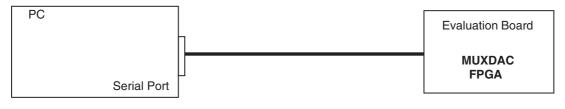
Figure 4-5. Completing Setup Wizard Window

Setup	
	Completing the Teoden SP3 Caracterization Setup Wizard Setup has finished installing Teoden SP3 Caracterization on your computer. The application may be launched by selecting the installed icons. Click Finish to exit Setup.
	Finish

After the installation, you can launch the interface with the following file: C:\Program Files e^2v ...

The window shown in Figure 4-6 will be displayed.

Figure 4-6. User Interface Window


🐳 e2v User Interfac			<u>_ X</u>
File Configuration Hel	P		
e2V	EV12DS13x	canac	Reset
Settings Loading	Pattern generator R/W		
Mux Ratio	C 2:1	PSS 0 1 2 3 4 5 6	7
Mode	3 ,	2 3 ,	2 3
Status Disable polling (PLL, STVF, HVTF		ion flag (STVF) — Hold time violation fla Off Off	
		Cancel	Apply
PLL Locked		FPGA version: Major 0x 0 Minor	0x 6

- Notes: 1. If the MUXDAC application board is not connected or not powered, an error message is displayed.
 - 2. Check your connection and restart the application (refer to section 3).

4.4 Troubleshooting Check that you own rights to write in the directory. Check for the available disk space. Check that at least one RS-232 serial port is free and properly configured. Check that the serial port and DB9 connector are properly connected. Check that all supplies are properly powered on. The serial port configuration should be as follows: Bit rate: 19200

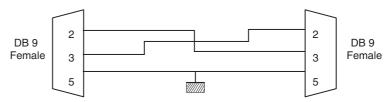

- Data coding: 8 bits
- 1 start bit, 1 stop bit
- No parity check

Figure 4-7. User Interface Hardware Implementation

- 1. Use an RS-232 port to send data to the DAC.
- 2. Connect the crossed DB9 (F/F) cable between your PC and your evaluation board as illustrated in Figure 4-8.

Figure 4-8. Crossed Cable

_ 🗆 🗵

Reset

Operating Modes 4.5 The MUXDAC software included with the evaluation board provides a graphical user interface to configure the DAC.

Push buttons, popup menus and capture windows allow easy:

With Setting and Test mode windows always click on Apply button to validate any command.

Figure 4-9. Cancel/Apply Buttons

Cancel Apply

Clicking on the *Cancel* button will restore last settings sent with *Apply* button.

The user could "save" or "load" the register configuration via the configuration function.

**	e2v User Interface	: Windows		
File	Configuration Help	,		
	Last Session	EWIODO10	2089.0	
	Load From	EW12D\$13x	valau	
S	Save To	Pattern generator R/W		
	Settings			
ſ	Mux Halio	-	Pss	
			01234	56
	• 4:1	O 2:1		
			III.	

Figure 4-10.	Save/Load Register	Configuration	Window

Se	Pattern generator R/W
Settings	
• 4:1	C 2:1
Mode	3 , OCDS 0 1 2 3 , , , , , , , , , , , , , , , , , , ,
Status Disable polling (PLL, STVF, HVTF)	Setup time violation flag (STVF) Hold time violation flag (HTVF) O On O Off
	Cancel Apply
PLL Locked	FPGA version: Major 0x 0 Minor 0x 6

4.5.1 Settings

Figure 4-11. Settings Window

Note: Configuration Help	Windows		_ 🗆 🗙
e2V	EV12DS13x	canac	Reset
Settings Loading	Pattern generator R/W		
Mux Ratio	O 2:1	PSS 0 1 2 3 4 5	6 7
Mode 0 1 2	3 , 0CDS	2 3	2 3
Status Disable polling (PLL, STVF, HVTF)	Setup time violatio O On	rn flag (STVF) — Hold time violation © Off On	
		Cancel	Apply
PLL Locked		FPGA version: Major 0x 0 Min	nor 0x 6

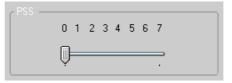
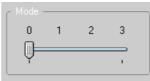

The software allows choosing between the MUX ratio 2 to 1 or 4 to 1.

Figure 4-12. MUX Ratio

The software allows adjusting the "PSS" (Phase Shift Select) delay to avoid a forbidden timing area between the data input and the clock input.


Figure 4-13. Clock Shift Select

Mode:

The MODE Function allows choosing between NRZ, reshaped NRZ, RTZ and RF functions.

Figure 4-14. DAC Output Mode

Label	Value	Description	Default setting	Position (IHM)
MODE[1:0]	00	NRZ mode	00	0
	01	Narrow RTZ (NRTZ)		1
	10	RTZ Mode (50%)		2
	11	RF		3

OCDS Function:

The software allows changing the DSP clock internal division factor from 1 to 2, 4 or 8.

Figure 4-15. OCDS Mode

OCDS				_
0	1	2	3	
Q—				

Label	Value	Description
	00	DSP clock frequency is equal to the sampling clock divided by
		2N
OCDS [1:0]	01	DSP clock frequency is equal to the sampling clock divided by 2N*2
	10	DSP clock frequency is equal to the sampling clock divided by 2N*4
	11	DSP clock frequency is equal to the sampling clock divided by 2N*8

Note: For more details see Erratasheet on OCDS.

IUCM Function:

An input underclocking mode has been added to the DAC in order to allow for a specific use where the input data are applied to the DAC at half the nominal rate with respect of the DAC sampling rate.

Figure 4-16. IUCM Mode

Label	Value	Description
IUCM	0	Input Underclocking mode inactive
IUCIM	1	Input Underclocking mode active

Note: Position 2 and 3 are not used.

Status:

The polling function allows scanning the FPGA to known the FGPA version and the PLL state. Setup time violation flag and Hold time violation flag can't be used at this time with this evaluation board. There are used to know if DAC are sampling correctly datas which are sent by the FPGA.

Figure 4-17. PLL Disable

Status	Setup time viola	tion flag (STVF) —	Hold time violatio	n flag (HTVF) —
Disable polling (PLL, STVF, HVTF)	O On	© Off	O On	© Off

Figure 4-18. PLL Locked

PLL	Locked	FPGA version: Major 0x 0 Minor 0x 6	

4.5.2 Loading

This module allows to send the pattern to the MUXDAC.

You can choose to send a ramp pattern or to send a dedicated pattern.

For ramp pattern:

- Active Ramp ON
- Press Start (for stop press Stop)

For dedicated pattern:

- Find the pattern file in the folders' architecture
- Check the information (nb vectors, MUX etc.)
- Press Send pattern
- Press Start
- For stop pattern press Stop
- Note: Before loading new pattern press Stop

e2v User Interface File Configuration Hel			_
e2v	EV12DS13x	cattac	Reset
Settings Loading	Pattern generator R/W		
Ramp ———	O ON	OFF	
Nb vectors	Send	Vout (dBFS) Fclk (MHz) Fout (MHz) pattern	
Control	S	tart	
		Cance	el Apply
PLL Locked		FPGA version: Major 0x 0	Minor 0x 6

Figure 4-19.	Loading Process Window
--------------	------------------------

4.5.3 Pattern Generator

This module allows creating sinewave pattern file only in order to send the data to the MuxDac.

Pattern generator procedure:

- Put information for each field.
- Put the way of the target folder to save the pattern
- Push "create pattern"

🐼 e2v User Interface Windows File Configuration Help	
ezv EV12DS13x	Catac Reset
Settings Loading Pattern generator R/W	
Vout (dBFS) (0 to -999)	5
Fclk (MHz)	264
Fout (MHz)	3.4
Number of vector (multiple of 8)	2048
MUX (1: DMUX2:1, 2: DMUX4:1)	1
	Create pattern
	Cancel Apply
PLL Locked	FPGA version: Major 0x 0 Minor 0x 6

Note: Not to exceed 4096 vectors with this generator otherwise pattern generates spurs in the FFT spectrum.

If you wish to create your own pattern file, please make sur to follow the below example.

For FFT minimum vector is : 2048

Maximum Vector = 16384

Minimum Vector = 8

The number of vector must be a multiple of 8

Example of Pattern file

# Vout (dBFS)	0
# Fclk (MHz)	3000
# Fout (MHz)	998.108
# MUX	2 DMUX4:1
# Nb vectors	4096
#	
Vector 1: 1110 Vector 2: 0001 Vector 3: 0111	00000000 111011110001 000100011010 0111111
Vector 5: 0001	01101001 011101010101 111101000000 000101110110
Vector 4093: 1 Vector 4094: 1	etc 00011010101 100001110111 111010110011 000011100001 00001100100 111010111101 000011101010 100001001

Your file must be terminated by an "Enter".

Software Tools

4.5.4 R/W

This module is used only for debug and just available with hotline support.

Ele Configuration Help	×
ezv EW12D\$13x (21'2C Reset	ר
Settings Loading Pattern generator R/W	
Read Address CONTROL Value Read	
c Write	
Address CONTROL Value Write	
Read value	
Fpga Pil Frequency	
3500 MHz Write	
Cancel Apply)
PLL Locked FPGA version: Major 0x 0 Minor 0x 6	

4.6	Configuration and Software of the FPGA Memory	The EV12DS130AGS used a Altera Stratix II FPGA Reference.
4.6.1	PROG FPGA	The configuration of the FPGA memory is done via the connector <i>PROG FPGA</i> already soldered on the evaluation board.

The schematic is shown in Figure 4-20.

Figure 4-20. FPGA Configuration in AS Mode (Serial Configuration Device Programmed Using Download Cable)

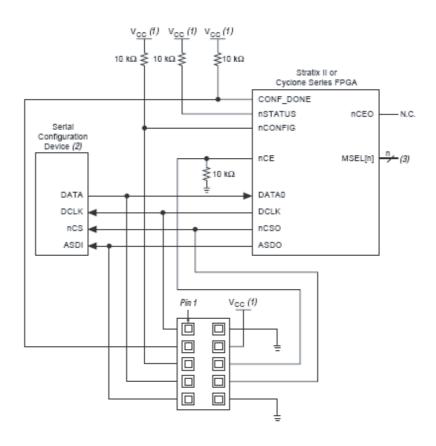


Table 4-1. Connector Type HE10 Male 2x5 points

Pin	Name	Pin	Name
1	DCLK (Serial clock)	2	GND (ground)
3	CONF-DONE (pull-up VCC)	4	VCC = 3.3V
5	nCONFIG (pull-up VCC)	6	nCE (pull-down)
7	DATA0 (data prog FPGA)	8	nCSO (Chip select)
9	ASDO	10	GND (ground)

For the configuration of the serial memory, there is a 4-bit configuration (MSL0-3).

In this application note that we use the FAST AS (40 MHz) mode:

- MSEL3: jumper out
- MSEL2: jumper in
- MSEL1: jumper in
- MSEL: jumper in

Table 4-2 shows the MSEL pin settings when using the AS configuration scheme.

Configuration Scheme	MSEL3	MSEL2	MSEL1	MSLE0
Fast AS (40 MHz) ⁽¹⁾	1	0	0	0
Remote system upgrade fast AS (40 MHz)	1	0	0	1
AS (20 MHz) ⁽¹⁾	1	1	0	1
Remote system upgrade AS (20 MHz) ⁽¹⁾	1	1	1	0

Table 4-2. STRATIX II and STRATIX II gx MSEL Pin Settings for AS Configuration

Note: 1. Only the EPCS16 and EPCS64 devices support a DCLK up to 40 MHz clock; other EPCS devices support a DCLK up to 20 MHz.

4.6.2 FPGA Configuration with JTAG

FPGA configuration with JTAG is used on debug mode.

Note: If the evaluation is powered off, the FPGA loses its configuration

The programming is implemented via JTAG connector. This connector is not on the evaluation board.

The schematic is shown in Figure 4-23.

Figure 4-21. Configuration of a Single Device Using a Download Cable

- Notes: 1. The pull-up resistor should be connected to the same supply voltage as the USB Blaster, MasterBlaster V₁₀ pin byteBlasterII or ByteBlasterMV cable.
 - 2. The jumper configuration (MSEL) has no effect in this mode.

Connector type HE10 male 2x5 points

Table 4-3.

Pin	Nom	Pin	Nom
1	TCK (pull down)	2	GND (ground)
3	TDO	4	VCC (3.3V)
5	TMS (pull up)	6	NC
7	NC	8	NC
9	TDI (pull up)	10	GND (ground)

We use JTAG USB for the FPGA programmation in JTAG mode.

 4.6.3
 Configuration of the FPGA on EV12DS130AGS Evaluation Board
 This sequence is correct for the serial memory configuration and JTAG configuration.

 1.
 Setup the power supplies +5V

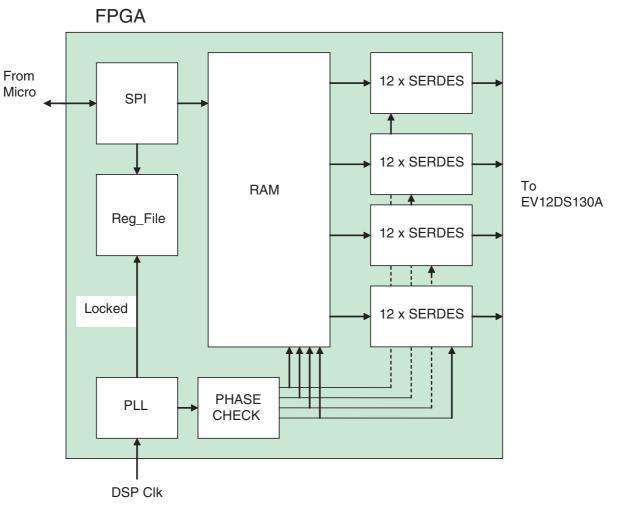
- 2. Connect the jumper MSEL (only for the serial memory)
 - MSEL3: Jumper off (signal to 3.3V)
 - MSEL2, MSEL1, MSEL0: jumper on (signal to GND)
 - RAMP _PATTERN: no jumper
- 3. Connect the USB BLASTER ALTERA cable on the evaluation board
 - PROG FPGA: for serial memory configuration
 - JTAG: For the JTAG configuration
- 4. Switch ON the supplies
- 5. Launch ALTERA QUARTUS II 8.0 software
- 6. Click on Program.

The window shown in Figure 4-22 is displayed:

- 7. Check that the USB blaster [USB-0] is selected, or click on Hardware Setup to perform this.
- 8. Select the mode Active Serial Programming for the serial memory programming.
- 9. Select the mode JTAG for programming via JTAG
- 10. Choose the program file (teoden_top.pof design 3 GHz) via *Add file*. The information must be indicated.
- 11. Click on **Start** to launch the program.

Software Tools

Figure 4-22. Sequence Serial Memory Configuration and JTAG Configuration


🚻 Quartus II - [C	hain1.cdf*]									_ 🗆 🗙
	ing Tools Window									
🔔 Hardware Setu	IP USB-Blaster [USB-0]			Mode: Active	Serial Progra	mming 💌	Progress:	0%	
Enable real-time	ISP to allow background (programming (for MAX I	l devices)							
🏓 Start	File	Device	Checksum	Usercode	Program/ Configure Verify	Blank- Check	Examine	Security Bit	Erase ISP CLAMP	
🖬 Stop	F:/TEODEN/prog-FP0	GA EPCS64	76283191	0000000	V V					
Auto Detect	il .									
🗙 Delete										
Add File	1									
👺 Change File	1									
🖺 Save File]									
Add Device	1									
📫 Up]									
🔎 Down]									
Ready									NU	м 📃 //

The FPGA configuration is complete when the *Progress* status shows 100%. For the serial memory mode, switch off the 5V supply.

12. Disconnect the USB BLASTER ALTERA cable, then power up the evaluation board to load the software via the external serial memory.

4.6.4 FPGA Block The following figure represents the block Diagram of the FPGA : Diagram

SPI	: SPI interface block
Reg File	: Control and Status registers and IO control
PLL	: Stratix PLL black box
RAM	: Startix MRAM and DPRAM instantiations
PHASE CHECK	: Process to ensure readout clock are in phase
SERDES	: 1 per output bit, so 12 per channel. Each SERDES is 8bits deep.

Software Tools

0989DX-BDC-01/13

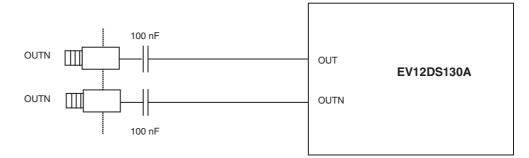
e2v semiconductors SAS 2013

EV12DS130AGS-EB User Guide

Section 5

Application Information

5.1 Analog Outputs

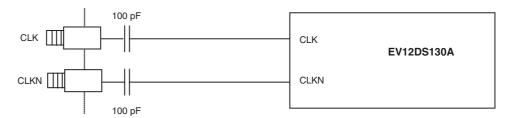

The analog output is in differential AC coupled mode as described in Figure 5-1.

The single-ended operation for the analog output is allowed but it may degrade the DAC performance significantly. It is therefore recommended to use a differential via an external balun or differential amplifier.

Note: References of differential amplifiers and external baluns:

- M/A-COM H9 balun
- M/A-COM TP101 1:1 transformer
- ANAREN 3A0056 3 dB coupler 2G-4G
- KRYTAR double arrow 180° hybrid 2G-8G

Figure 5-1. Differential Analog Output Implementation

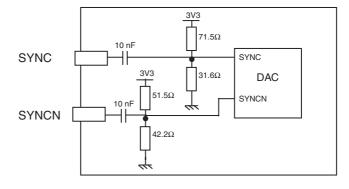


For further application information refer to application note 1087.

5.2 Clock Inputs

The clock input can be entered indifferently in single-ended or differential mode with no performance degradation. The clock is AC coupled via 100 pF capacitors as described in Figure 5-2.

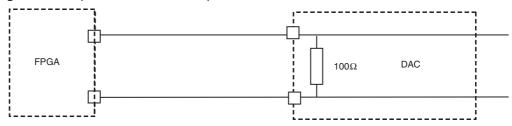
Figure 5-2. Clock Input Implementation


If used in single-ended mode, CLKN should be terminated to ground via a 50Ω resistor. This is physically done by shorting the SMA on CLKIN with a 50Ω cap.

The jitter performance on the clock is crucial to obtain optimum performance from the DAC. We thus recommend to use a very low phase noise clock signal if a fixed frequency is used.

5.3 SYNC Inputs The SYNC, SYNCN is necessary to start the DAC after power up.

The reset signal is implemented as illustrated in Figure 5-3. We recommend to apply a square LVDS signal.

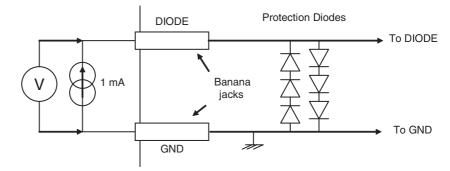


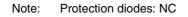
5.4 Input Data The input data are LVDS differential and are 100Ω on chip terminated to ground as shown in Figure 5-4.

The input data of DAC is generated by the FPGA.

Figure 5-4. Input Data on-board Implementation

5.5 Diode for Junction Temperature Monitoring


Two 2 mm banana jacks are provided for the die junction temperature monitoring of the DAC.


One banana jack is labeled DIODE and should be applied a current of up to 1 mA (via a multimeter used in current source mode) and the second one is connected to GND.

The DAC diode is protected via 2 x 3 head-to-tail diodes.

Figure 5-5 describes the setup for the die junction temperature monitoring using a multimeter.

Figure 5-5. Die Temperature monitoring Test Setup

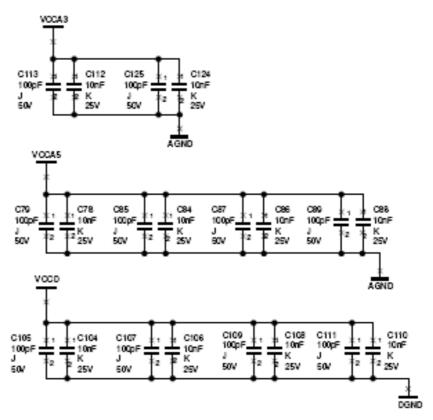
Application Information

0989DX-BDC-01/13

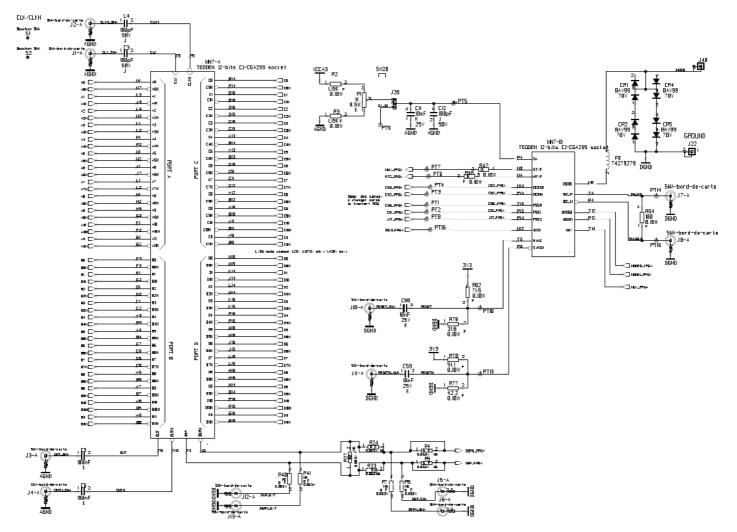
Section 6 Ordering Information

Table 6-1. Ordering Information

Part Number	Package	Temperature Range	Screening Level	Comments
EVX12DS130AGS	CI CGA 255	Ambient	Prototype	
EV12DS130AGS-EB	CI CGA 255	Ambient	Prototype	Evaluation board


Ordering Information

e2v


Section 7 Appendices

7.1 EV12DS130AGS-**EB** Electrical Figure 7-1. Power Supplies Bypassing **Schematics** VCCA5 ANALOG C115 GROUND 100nF PT115 → 50V K J18 ø C114 1uF (| M 20V AGND 1 J19 AGND VCCD VCCA3 ANALOG GROUND PT116 C123 100nF C121 100nF GROUN PT117 🖽 (A) J23 →1 →2 50V K 50V K 1 1 C122 C120 1uF 1uF -M 20V 20V 20 AGND 10 DGND DGND 10 J30 AGND J24

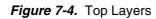

Figure 7-2. Power Supplies Decoupling ($J = \pm 5\%$ tolerance)

Figure 7-3. Electrical Schematics (DAC)

7.2 EV12DS130AGS-EB Board Layers

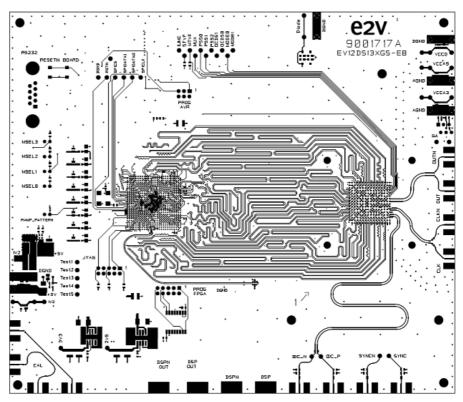


Figure 7-5. Bottom Layer

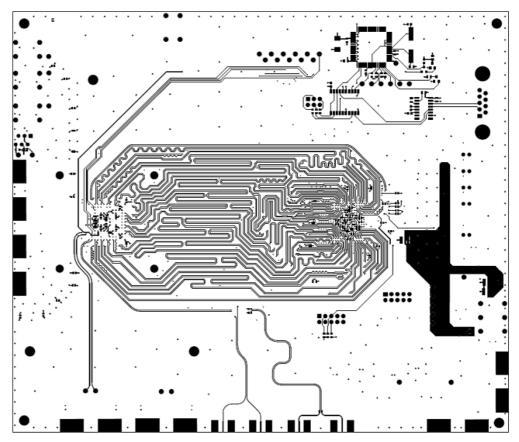


Figure 7-6. Layer 2 GND Plane

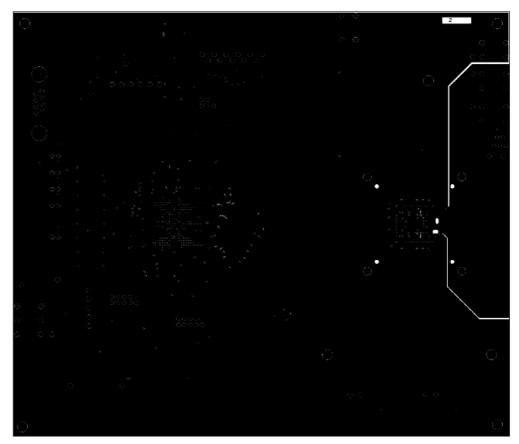
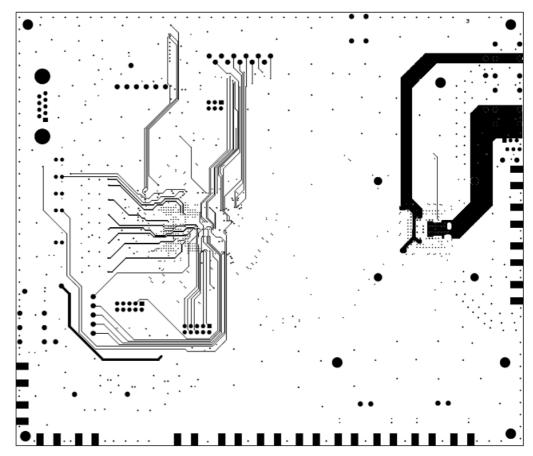



Figure 7-7. Layer 3 Power Supplies

Appendices

e2v

How to reach us

Home page: www.e2v.com

Sales offices:

Europe Regional sales office

e2v Itd 106 Waterhouse Lane Chelmsford Essex CM1 2QU England Tel: +44 (0)1245 493493 Fax: +44 (0)1245 492492 mailto: enquiries@e2v.com

e2v sas

16 Burospace F-91572 Bièvres Cedex France Tel: +33 (0) 16019 5500 Fax: +33 (0) 16019 5529 mailto: enquiries-fr@e2v.com

e2v Aerospace and defense inc

765 Sycamore Drive Milpitas California 95035 USA Tel: +33 (0) 1 408 737 0992 Fax: +33 (0) 1 408 736 8708 mailto: e2v-us.com

Americas

e2v inc 520 White Plains Road Suite 450 Tarrytown, NY 10591 USA Tel: +1 (914) 592 6050 or 1-800-342-5338, Fax: +1 (914) 592-5148 mailto: enquiries-na@e2v.com

Asia Pacific

e2v Itd 11/F., Onfem Tower, 29 Wyndham Street, Central, Hong Kong Tel: +852 3679 364 8/9 Fax: +852 3583 1084 mailto: enquiries-ap@e2v.com

Product Contact:

e2v Avenue de Rochepleine BP 123 - 38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 **Hotline**:

mailto: hotline-bdc@e2v.com

Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.