Low Power 10-bit 3 Gsps Digital to Analog Converter with 4/2:1 Multiplexer

Datasheet

Main Features

- 10-bit Resolution
- 3 GSps Guaranteed Conversion Rate
- 7 GHz Analog Output Bandwidth
- 4:1 or 2:1 Integrated Parallel MUX (Selectable)
- Selectable Output Modes:

Return to Zero, Non Return to Zero, Narrow Return to Zero, RF

- Low Latency Time: 3.5 Clock Cycles
- 1.4 Watt Power Dissipation in MUX 4:1 Mode
- Functions
- Selectable MUX Ratio 4:1 (Full Speed), 2:1 (Half Speed)
- Triple Majority Voting
- User-friendly Functions:
- Gain Adjustment
- Input Data Check Bit (FPGA Timing Check)
- Setup Time and Hold Time Violation Flags (STVF, HTVF)
- Clock Phase Shift Select for Synchronization with DSP (PSS[2:0])
- Output Clock Division Selection (Possibility to Change the Division Ratio of the DSP Clock)
- Input Under Clocking Mode
- Diode for Die junction Temperature Monitoring
- LVDS Differential Data input and DSP Clock Output
- Analog Output Swing: $1 \mathrm{~V}_{\mathrm{pp}}$ Differential (100Ω Differential Impedance)
- External Reset for Synchronization of Multiple MuxDACs
- Power Supplies: 3.3 V (Digital), 3.3V \& 5.0V (Analog)
- FpBGA Package ($15 \times 15 \mathrm{~mm}$ Body Size, 1 mm Pitch)

Performances

Single Tone:

- Performances Characterized for Fout from 100 MHz to 4500 MHz and from 2 GSps to 3.2 GSps .
- Performance Industrially Screened Over 3 Nyquist Zones at 3 GSps for Selected Fout.

Step Response

- Full Scale Rise /Fall Time 50 ps

EV10DS130AZP

Applications

- Direct Digital Synthesis for Broadband Applications (L-S and Lower C Band)
- Automatic Test Equipment (ATE)
- Arbitrary Waveform Generators
- Radar Waveform Signal Synthesis
- DOCSIS V3.0 Systems

1. Block Diagram

Figure 1-1. Simplified Block Diagram

2. Description

The EV10DS130A is a 10-bit 3 GSps DAC with an integrated 4:1 or 2:1 multiplexer, allowing easy interface with standard LVDS FPGAs thanks to user friendly features as OCDS, PSS.
It embeds different output modes (RTZ, NRZ, narrow RTZ, RF) that allows performance optimizations depending on the working Nyquist zone.
The Noise Power Ratio (NPR) performance, over more than 900 MHz instantaneous bandwidth, and the high linearity (SFDR, IMD) over full $1^{\text {st }}$ Nyquist zone at 3 GSps (NRZ feature), make this product well suited for high-end applications such as arbitrary waveform generators and broadband DDS systems.

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3-1. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Positive Analog supply voltage	$\mathrm{V}_{\text {CCA5 }}$	6.0	V
Positive Analog supply voltage	$\mathrm{V}_{\text {CCA }}$	4.0	V
Positive Digital supply voltage	$\mathrm{V}_{\mathrm{CCD}}$	4.0	V
Digital inputs (on each single-ended input) and IDC, SYNC, signal Port $P=A, B, C, D$ V_{IL} V_{IH} Digital Input maximum Differential mode swing	[PO..P9], [P0N.. P9N] IDC_P, IDC_N SYNC, SYNCN	$\begin{gathered} \text { GND-0.3 } \\ \text { V CCA }_{\text {Cla }} \\ 2.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V}_{\mathrm{pp}} \end{gathered}$
Master clock input (on each single-ended input) V_{IL} V_{IH} Master Clock Maximum Differential mode swing	CLK, CLKN	$\begin{aligned} & 1.5 \\ & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V}_{\mathrm{pp}} \end{gathered}$
Control functions inputs $\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{gathered} \text { MUX, } \\ \text { MODE[0..1], } \\ \text { PSS[0..2], } \\ \text { OCDS[0..1] } \end{gathered}$	$\begin{gathered} -0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCD}}+0.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Gain Adjustment function	GA	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}+0.3$	V
Maximum Junction Temperature	Tj	170	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge immunity ESD Classification	ESD HBM	$\begin{gathered} 1000 \\ \text { Class 1B } \end{gathered}$	V

Notes: 1. Absolute maximum ratings are limiting values (referenced to $\mathrm{GND}=0 \mathrm{~V}$), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability.
2. All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.
3. Maximum ratings enable active inputs with DAC powered off.
4. Maximum ratings enable floating inputs with DAC powered on.
5. DSP clock and STVF, HTVF output buffers must not be shorted to ground nor positive power supply.

EV10DS130AZP

3.2 Recommended Conditions of Use

Table 3-2. Recommended Conditions of Use

Parameter	Symbol	Comments	Recommended Value	Unit	Note
Positive analog supply voltage	$\mathrm{V}_{\text {CCA5 }}$		5.0	V	(2)(4)
Positive analog supply voltage	$\mathrm{V}_{\text {CCA3 }}$		3.3	V	(1)(2)(4)
Positive digital supply voltage	$\mathrm{V}_{\mathrm{CCD}}$		3.3	V	(2)(4)
Digital inputs (on each single-ended input) and IDC, SYNC, signal Port $P=A, B, C, D$ $V_{\text {IL }}$ V_{IH} Differential mode swing	[P0..P9], [P0N.. P9N] IDC_P, IDC_N SYNC, SYNCN		$\begin{gathered} 1.075 \\ 1.425 \\ 700 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{pp} \end{gathered}$	(3)
Master clock input power level (Differential mode)	$\mathrm{P}_{\text {CLK }}$		3	dBm	(3)
Control functions inputs	MUX, OCDS, PSS, MODE, PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{~V}_{\mathrm{CCD}} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Gain Adjustment function	GA	Range	$\begin{gathered} 0 \\ \mathrm{~V}_{\text {ССА }} \end{gathered}$	V	
Operating Temperature Range	$\mathrm{T}_{\mathrm{c}} \mathrm{T}_{\mathrm{j}}$	```Commercial "C" grade Industrial "V" grade```	$\begin{gathered} \mathrm{T}_{\mathrm{c}}>0^{\circ} \mathrm{C} / \mathrm{T}_{\mathrm{j}}<90^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{c}}>-40^{\circ} \mathrm{C} / \mathrm{T}_{\mathrm{j}}<110^{\circ} \mathrm{C} \end{gathered}$	${ }^{\circ} \mathrm{C}$	

Notes: 1. For low temperature it is recommended to operate at maximum analog supplies ($\mathrm{V}_{\text {ССАЗ }}$) level.
2. In order to obtain the guaranteed performances and functionality the following rules shall be followed when powering the device: (see Section 7.9 "Power Up Sequencing" on page 40)

Power-up sequence:

It is necessary to raise $\mathrm{V}_{\text {CCA5 }}$ power supply within the range 5.20 V up to a recommended maximum of 5.60 V during at least 1 ms at power up. Then the supply voltage has to settle within 500 ms to a steady nominal supply voltage within a range of 4.75 V up to 5.25 V .

A power-up sequence on $\mathrm{V}_{\text {CCA5 }}$ that does not comply with the above recommendation will not compromise the functional operation of the device. Only the noise floor will be affected.

The rise time for any of the power supplies $\left(\mathrm{V}_{\mathrm{CCD}}, \mathrm{V}_{\mathrm{CCA5}}\right.$ and $\left.\mathrm{V}_{\mathrm{CCA3}}\right)$ shall be $\leq 10 \mathrm{~ms}$.
At power-up a SYNC pulse is internally and automatically generated when the following sequence is satisfied: $\mathrm{V}_{\text {CCD }}, \mathrm{V}_{\text {CCA3 }}$ and $\mathrm{V}_{\mathrm{CCA5}}$. To cancel the SYNC pulse at power-up, it is necessary to apply the sequence: $\mathrm{V}_{\mathrm{CCA} 5}, \mathrm{~V}_{\mathrm{CCA} 3}, \mathrm{~V}_{\mathrm{CCD}}$. $\left(\mathrm{V}_{\mathrm{CCA}}\right.$ can not reach 0.5 V until $\mathrm{V}_{\text {CCA5 }}$ is greater than 4.5 V . $\mathrm{V}_{\text {CCD }}$ can not reach 0.5 V until $\mathrm{V}_{\text {CCA3 }}$ is greater than 3.0 V). Any other sequence may not have a deterministic SYNC behaviour.

Relationship between power supplies:
Within the applicable power supplies range, the following relationship shall always be satisfied $\mathrm{V}_{\text {CCA3 }} \geq \mathrm{V}_{\mathrm{CCD}}$, taking into account AGND and DGND planes are merged and power supplies accuracy. See erratasheet (ref 1125) for SYNC condition of use.
3. Analog output is in differential. Single-ended operation is not recommended. Guaranteed performance is only in differential configuration.
4. No power-down sequencing is required.

3.3 Electrical Characteristics

Values in the tables below are based on our conditions of measurement in room temperature for typical power supply ($\mathrm{V}_{\mathrm{CCA} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=3.3 \mathrm{~V}$), typical swing and in MUX4:1 otherwise specified.

Table 3-3. Electrical Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test Level ${ }^{(2)}$
RESOLUTION			10		bit		
POWER REQUIREMENTS							
Power Supply voltage - Analog - Analog - Digital	$\mathrm{V}_{\text {CCA5 }}$ $\mathrm{V}_{\text {CCA3 }}$ $\mathrm{V}_{\mathrm{CCD}}$	$\begin{aligned} & 4.75 \\ & 3.15 \\ & 3.15 \end{aligned}$	$\begin{gathered} 5 \\ 3.3 \\ 3.3 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 3.45 \\ & 3.45 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	(7)(8)	1
Power Supply current (4:1 MUX) - Analog - Analog - Digital	$\begin{aligned} & \mathrm{I}_{\mathrm{CCA5}} \\ & \mathrm{I}_{\mathrm{CCAB}} \\ & \mathrm{I}_{\mathrm{CDD}} \end{aligned}$		$\begin{gathered} 84 \\ 106 \\ 187 \end{gathered}$	$\begin{gathered} 90 \\ 122 \\ 202 \end{gathered}$	mA mA mA		1
Power Supply current (2:1 MUX) - Analog - Analog - Digital	$\begin{aligned} & \mathrm{I}_{\mathrm{CCA}} \\ & \mathrm{I}_{\mathrm{CCA}} \\ & \mathrm{I}_{\mathrm{CCD}} \end{aligned}$		$\begin{gathered} 84 \\ 106 \\ 160 \end{gathered}$	$\begin{gathered} 90 \\ 122 \\ 172 \end{gathered}$	mA mA mA		1
Power dissipation (4:1 MUX)	P_{D}		1.4	1.6	W		1
Power dissipation (2:1 DMUX)	P_{D}		1.3	1.5	W		1
DIGITAL DATA INPUTS, SYNC and IDC INPUTS							
Logic compatibility			LVDS				
Digital input voltages: - Differential input voltage - Common mode	$\begin{aligned} & \mathrm{V}_{\text {ID }} \\ & \mathrm{V}_{\mathrm{ICM}} \end{aligned}$	100	$\begin{aligned} & 350 \\ & 1.25 \end{aligned}$	500	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Input capacitance from each single input to ground				2	pF		5
Differential Input resistance		80	100	120	Ω		1
CLOCK INPUTS							
Input voltages (Differential operation swing)		0.56	1	2.24	V_{pp}	${ }^{(1)}$	4
Power level (Differential operation)		-4	1	8	dBm		4
Common mode		2.4	2.5	2.6	V		
Input capacitance from each single input to ground (at die level)				2	pF		5
Differential Input resistance:		80	100	120	Ω		1
DSP CLOCK OUTPUT							
Logic compatibility		LVDS					
Digital output voltages:							
- Differential output voltage - Common mode	$\begin{gathered} \mathrm{V}_{\mathrm{OD}} \\ \mathrm{~V}_{\mathrm{OCM}} \\ \hline \end{gathered}$	240	$\begin{array}{r} 350 \\ 1.3 \\ \hline \end{array}$	450	$\begin{gathered} \mathrm{mV}_{\mathrm{p}} \\ \mathrm{~V} \end{gathered}$		1

EV10DS130AZP

Table 3-3. \quad Electrical Characteristics (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test Level ${ }^{(2)}$
ANALOG OUTPUT							
Full-scale Differential output voltage (100Ω differentially terminated)		0.92	1	1.08	$V_{p p}$		1
Full-scale output power (differential output)		0.25	1	1.64	dBm		1
Single-ended mid-scale output voltage (50Ω terminated)			$\mathrm{V}_{\text {CCA5 }}-0.43$		V	(4)	
Output capacitance			1.5		pF		5
Output internal differential resistance		90	100	110	Ω		1
Output VSWR (using e2v evaluation board) $1.5 \mathrm{GHz}$ 3 GHz 4.5 GHz			$\begin{aligned} & 1.17 \\ & 1.54 \\ & 1.64 \end{aligned}$				4
Output bandwidth			7		GHz		4
FUNCTIONS							
Digital functions: MODE, OCDS, PSS, MUX - Logic 0 - Logic 1	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IN}} \end{aligned}$	1.6	$\begin{gathered} 0 \\ \mathrm{~V}_{\mathrm{CCD}} \end{gathered}$	$\begin{aligned} & 0.8 \\ & 150 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$	(6)	1
Gain Adjustment function	GA		$\begin{gathered} 0 \\ \mathrm{~V}_{\text {CCA }} \end{gathered}$				1
Digital output function (HTVF, STVF) Logic 0 Logic 1	$\begin{gathered} \mathrm{v}_{\mathrm{OL}} \\ \mathrm{v}_{\mathrm{OH}} \\ \mathrm{I}_{\mathrm{O}} \end{gathered}$	2.3	-	$\begin{aligned} & 0.8 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ $\mu \mathrm{A}$	(5) (6)	1
DC ACCURACY							
Differential Non-Linearity	DNL+		0.3	0.8	LSB		1
Differential Non-Linearity	DNL-	-0.8	-0.3		LSB		1
Integral Non-Linearity	INL+		0.25	1.2	LSB		1
Integral Non-Linearity	INL-	-1.2	-0.25		LSB		1
DC gain: - Initial gain error - DC gain adjustment - DC gain sensitivity to power supplies - DC gain drift over temperature		-8	$\begin{gathered} 0 \\ \pm 11 \\ \pm 2 \end{gathered}$	$+8$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	(3)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$

Notes: 1. For use in higher Nyquist zone, it is recommended to use higher power clock within the limit.
2. See Section 3.6 on page 13 for explanation of test levels.
3. Initial gain error corresponds to the deviation of the DC gain center value from unity gain. The DC gain adjustment (GA function) ensures that the initial gain deviation can be cancelled.
The DC gain sensitivity to power supplies is given according the rule:
GainSensVsSupply = IGain@VccMin - Gain@VccMaxl / Gain@Vccnom
4. Single-ended operation is not recommended, this line is given for better understanding of what is output by the DAC.
5. In order to modify the $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ value, potential divider could be used.
6. Sink or source.
7. Relationship between power supplies:

Within the applicable power supplies range, the following relationship shall always be satisfied $\mathrm{V}_{\mathrm{CCA}} \geq \mathrm{V}_{\mathrm{CCD}}$, taking into account AGND and DGND planes are merged and power supplies accuracy.
8. Please refer Section 7.9 "Power Up Sequencing" on page 40.

3.4 AC Electrical Characteristics

Values in the tables below are based on our conditions of measurement in room temperature for typical power supply ($\mathrm{V}_{\mathrm{CCA5}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {CCA }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=3.3 \mathrm{~V}$), typical swing and in MUX4:1 otherwise specified.

Table 3-4. AC Electrical Characteristics NRZ Mode (First Nyquist Zone)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(2)}$	
Single-tone Spurious Free Dynamic Range First Nyquist MUX 4:1 $\begin{aligned} & \text { Fs }=3 \text { GSps } @ \text { Fout }=100 \mathrm{MHz} 0 \mathrm{dBFS} \\ & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=100 \mathrm{MHz}-3 \mathrm{dBFS} \end{aligned}$	\|SFDR		57	66 67		dBc	(1)	$\begin{aligned} & 1 \\ & 4 \end{aligned}$
Highest spur level First Nyquist MUX 4:1 $\begin{aligned} & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=100 \mathrm{MHz} 0 \mathrm{dBFS} \\ & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=100 \mathrm{MHz}-3 \mathrm{dBFS} \end{aligned}$			$\begin{aligned} & -66 \\ & -72 \end{aligned}$	-56	dBm		$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
SFDR sensitivity \& high spur level variation over temperature			± 2		dB		4	
SFDR sensitivity \& high spur level variation over power supplies			± 2		dB		4	
Signal independent Spur (clock-related spur)								
Fc/2			-82		dBm		4	
Fc/4			-85		dBm		4	
Noise Power Ratio -14 dBFS peak to rms loading factor Fs $=3$ GSps 20 MHz to 900 MHz broadband pattern 25 MHz notch centered on 450 MHz	NPR		45		dB	(3)	4	
Equivalent ENOB Computed from NPR figure	ENOB		9.0		Bit		4	
Signal to Noise Ratio Computed from NPR figure	SNR		56		dB		4	
Self Noise Density at code 0 or 4095			-155		$\mathrm{dBm} / \mathrm{Hz}$		4	

Notes: 1. Ratio of the magnitude of the first (main) harmonic and the highest other harmonic measured.
2. See Section 3.6 on page 13 for explanation of test levels.
3. Figures in tables are derived from industrial screening; for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

EV10DS130AZP

Table 3-5. AC Electrical Characteristics NRTZ Mode (First \& Second Nyquist Zone)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(2)}$	
Single-tone Spurious Free Dynamic Range MUX4:1 Fs $=3$ GSps @ Fout $=100 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3 \mathrm{GSps}$ @ Fout $=700 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=1800 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=700 \mathrm{MHz}-3 \mathrm{dBFS}$ MUX2:1 Fs = 1.5 GSps @ Fout $=700 \mathrm{MHz} 0 \mathrm{dBFS}$	\|SFDR		52 52	68 62 60 66 60		dBc	(1)	4 4 1 4 1
Highest spur level MUX4:1 Fs $=3 \mathrm{GSps} @$ Fout $=100 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3 \mathrm{GSps} @$ Fout $=700 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=1800 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=700 \mathrm{MHz}-3 \mathrm{dBFS}$ MUX2:1 Fs = 1.5 GSps @ Fout $=700 \mathrm{MHz} 0 \mathrm{dBFS}$			$\begin{aligned} & -70 \\ & -64 \\ & -65 \\ & -70 \\ & \\ & -64 \end{aligned}$	-57 -54	dBm		4 4 1 4 1	
SFDR sensitivity \& high spur level variation over temperature			± 2		dB		4	
SFDR sensitivity \& high spur level variation over power supplies			± 2		dB		4	
Signal independent Spur (clock-related spur)								
Fc			-29		dBm		4	
Fc/2			-80		dBm		4	
Fc/4			<-80		dBm		4	
Self Noise Density at code 0 or 4095			-149	-140	dBm/Hz		1	
Noise Power Ratio -14 dBFS peak to rms loading factor $\mathrm{Fs}=3 \mathrm{GSps}$ 20 MHz to 900 MHz broadband pattern, 25 MHz notch centered on 450 MHz	NPR	45	46		dB	(3)	1	
Equivalent ENOB Computed from NPR figure	ENOB	9.0	9.2		Bit	(3)	1	
Signal to Noise Ratio Computed from NPR figure	SNR	56	57		dB	(3)	1	

Notes: 1. Ratio of the magnitude of the first (main) harmonic and the highest other harmonic measured.
2. See Section 3.6 on page 13 for explanation of test levels.
3. Figures in tables are derived from industrial screening; for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

Table 3-6. AC Electrical Characteristics RTZ Mode (Second Nyquist Zone)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(2)}$	
Single-tone Spurious Free Dynamic Range MUX4:1 $\begin{aligned} & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=1600 \mathrm{MHz} 0 \mathrm{dBFS} \\ & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=2900 \mathrm{MHz} 0 \mathrm{dBFS} \end{aligned}$	\|SFDR		49	$\begin{aligned} & 58 \\ & 56 \end{aligned}$		dBc	(1)	$\begin{aligned} & 1 \\ & 4 \end{aligned}$
Highest spur level MUX4:1 $\begin{aligned} & \text { Fs }=3 \mathrm{GSps} @ \text { Fout }=1600 \mathrm{MHz} 0 \mathrm{dBFS} \\ & \mathrm{Fs}=3 \mathrm{GSps} @ \text { Fout }=2900 \mathrm{MHz} 0 \mathrm{dBFS} \end{aligned}$			$\begin{aligned} & -55 \\ & -63 \end{aligned}$	-57	dBm		$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
SFDR sensitivity \& high spur level variation over temperature			± 2		dB		4	
SFDR sensitivity \& high spur level variation over power supplies			± 2		dB		4	
Signal independent Spur (clock-related spur)								
Fc			-25		dBm		4	
Fc/2			-80		dBm		4	
Fc/4			<-80		dBm		4	
Self Noise Density at code 0 or 4095			-143		$\mathrm{dBm} / \mathrm{Hz}$		4	
Noise Power Ratio -14 dBFS peak to rms loading factor Fs $=3$ GSps 1520 MHz to 2200 MHz broadband pattern, 25 MHz notch centered on 1850 MHz	NPR	38	40		dB		1	
Equivalent ENOB Computed from NPR figure	ENOB	7.8	8.2		Bit		1	
Signal to Noise Ratio Computed from NPR figure	SNR	49	51		dB		1	

Notes: 1. Ratio of the magnitude of the first (main) harmonic and the highest other harmonic measured.
2. See Section 3.6 on page 13 for explanation of test levels.

EV10DS130AZP

Table 3-7. AC Electrical Characteristics RF Mode (Second and Third Nyquist Zones)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(2)}$
Single-tone Spurious Free Dynamic Range $2^{\text {nd }}$ Nyquist Fs $=3$ GSps @ Fout $=1600 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3 \mathrm{GSps}$ @ Fout $=2900 \mathrm{MHz} 0 \mathrm{dBFS}$ $3^{\text {rd }}$ Nyquist Fs $=3$ GSps @ Fout $=3800 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=4400 \mathrm{MHz} 0 \mathrm{dBFS}$	ISFDR\|	45	52 58 53 54		dBc	(1) (3)	4 4 4 1
Highest spur level $2^{\text {nd }}$ Nyquist Fs $=3$ GSps @ Fout $=1600 \mathrm{MHz} 0 \mathrm{dBFS}$ Fs $=3$ GSps @ Fout $=2900 \mathrm{MHz} 0 \mathrm{dBFS}$ $3^{\text {rd }}$ Nyquist Fs $=3$ GSps @ Fout $=4400 \mathrm{MHz} 0 \mathrm{dBFS}$			$\begin{aligned} & -58 \\ & -58 \\ & -62 \end{aligned}$	-56	dBm		4 4 1
SFDR sensitivity \& high spur level variation over temperature			± 2		dB		4
SFDR sensitivity \& high spur level variation over power supplies			± 2		dB		4
Signal independent Spur (clock-related spur)							
Fc			-28		dBm		4
Fc/2			-80		dBm		4
Fc/4			<-80		dBm		4
Self Noise Density at code 0 or 4095			-141		$\mathrm{dBm} / \mathrm{Hz}$		4
Noise Power Ratio (2 ${ }^{\text {nd }}$ Nyquist) -14 dBFS peak to rms loading factor Fs = 3 GSps 1520 MHz to 2200 MHz broadband pattern, 25 MHz notch centered on 1850 MHz	NPR		38		dB	(4)	4
Equivalent ENOB Computed from NPR figure	ENOB		7.8		Bit	(4)	4
Signal to Noise Ratio Computed from NPR figure	SNR		49		dB	(4)	4
Noise Power Ratio -14 dBFS peak to rms loading factor Fs $=3$ GSps 2200 MHz to 2880 MHz broadband pattern, 25 MHz notch centered on 2550 MHz	NPR		38		dB	(4)	4
Equivalent ENOB Computed from NPR figure	ENOB		7.8		Bit	(4)	4
Signal to Noise Ratio Computed from NPR figure	SNR		49		dB	(4)	4

Table 3-7. AC Electrical Characteristics RF Mode (Second and Third Nyquist Zones) (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(2)}$
Noise Power Ratio -14 dBFS peak to rms loading factor Fs = 3 GSps 3050 MHz to 3700 MHz broadband pattern, 25 MHz notch centered on 3375 MHz	NPR	36	38				
Equivalent ENOB Computed from NPR figure	ENOB	7.5	7.8		dB	(4)	
Signal to Noise Ratio Computed from NPR figure	SNR	47	49		Bit	(4)	1

Notes: 1. Ratio of the magnitude of the first (main) harmonic and the highest other harmonic measured.
2. See Section 3.6 on page 13 for explanation of test levels.
3. Ratio of the magnitude of the first (main) harmonic and the highest other harmonic measured over the third Nyquist frequency band (Fs to 3Fs/2).
4. Figures in tables herafter are derived from industrial screening without any correction to take in account the balun effect, but for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

3.5 Timing Characteristics and Switching Performances

Table 3-8. \quad Timing Characteristics and Switching Performances

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level ${ }^{(1)}$
SWITCHING PERFORMANCE AND CHARACTERISTICS							
Operating clock frequency 4:1 MUX mode 2:1 MUX mode		$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 3000 \\ & 1500 \end{aligned}$	MHz		4
TIMING CHARACTERISTICS							
Analog output rise/fall time	$\begin{aligned} & \mathrm{T}_{\mathrm{OR}} \\ & \mathrm{~T}_{\mathrm{OF}} \end{aligned}$			60	ps	(2)	4
Data Tsetup (Fc = 3 GSps)		250			ps	(3)	4
Data Thold (Fc = 3 GSps)		100			ps	(3)	4
Max Input data rate (Mux 4:1)			750		MSps		4
Max Input data rate (Mux 2:1)			750		MSps		4
Master clock input jitter				100	fs rms	(4)	4
DSP clock phase tuning range		0		+3.5	Clock Cycle		5
DSP clock phase tuning steps			0.5		Clock cycle		5
Master clock to DSP, DSPN delay	TDSP		1.6		ns		4
SYNC forbidden area lower bound	T ${ }_{1}$		$\begin{aligned} & 0.5 \mathrm{~T}_{\mathrm{C}} \\ & +300 \end{aligned}$		ps	(5)	4
SYNC forbidden area upper bound	T_{2}		$\begin{aligned} & 0.5 \mathrm{~T}_{\mathrm{C}} \\ & +160 \end{aligned}$		ps	(5)	4

EV10DS130AZP

Table 3-8. \quad Timing Characteristics and Switching Performances (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Note	Test level
SYNC to DSP, DSPN							
MUX 2:1			880		ps		4
MUX4:1		1600					
Pipeline delay							4
MUX4:1	TDP			3.5	Clock cycles		4
MUX2:1			3.5				
Output delay	TOD		160		ps		4

Notes: 1. See Section 3.6 on page 13 for explanation of the test level.
2. Analog output rise/fall time measured from 20% to 80% of a full scale jump, after probe de-embedding.
3. Exclusive of period (pp) jitter on Data. Setup and hold time for DATA at input relative to DSP clock at output of the component, at PSS = 000; also applicable for IDC signal.
4. Master clock input jitter defined over 5 GHz bandwidth.
5. T_{C} represents the master clock period. See Figure 3-3 on page 13.

Figure 3-1. Timing Diagram for 4:1 MUX Principle of Operation OCDS[00]

Figure 3-2. Timing Diagram for 2:1 MUX Principle of Operation OCDS[00]

Figure 3-3. SYNC Timing Diagram

Please refer to Section 5.8 "Synchronization Functions for Multi-DAC Operation" on page 25.

3.6 Explanation of Test Levels

1	100% production tested at $+25^{\circ} \mathbf{C}^{(1)}$
2	100% production tested at $+25^{\circ} \mathrm{C}^{(1)}$, and sample tested at specified temperatures.
3	Sample tested only at specified temperatures
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter value is only guaranteed by design
6	100% production tested over specified temperature range (for Space/Mil grade ${ }^{(2)}$)

Only MIN and MAX values are guaranteed.
Notes: 1. Unless otherwise specified.
2. If applicable, please refer to "Ordering Information"

3.7 Digital Input Coding Table

Table 3-9. Coding Table

Digital output msb..........lsb	Differential analog output
0000000000	-500 mV
0100000000	-250 mV
0110000000	-125 mV
1000000000	0 mV
1010000000	+125 mV
1100000000	+250 mV
1111111111	+500 mV

4. Definition of Terms

Abbreviation	Term	Definition
(Fs max)	Maximum conversion Frequency	Maximum conversion frequency
(Fs min)	Minimum conversion frequency	Minimum conversion Frequency
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, set at 1 dB below Full Scale, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dB (i.e., related to converter -1 dB Full Scale), or in dBc (i.e, related to input signal level).
(HSL)	High Spur Level	Power of highest spurious spectral component expressed in dBm .
(ENOB)	Effective Number Of Bits	ENOB is determinated from NPR measurement with the formula: $\mathrm{ENOB}=\left(\mathrm{SNR}_{[\mathrm{dB]}]}-1.76\right) / 6.02$ Where LF "Loading factor" is the ratio between the Gaussian noise standard deviation versus amplitude full scale.
(SNR)	Signal to noise ratio	SNR is determinated from NPR measurement with the formula: $\mathrm{SNR}_{[\mathrm{dB}]}=\mathrm{NPR}_{[\mathrm{dB]}]}+\mathrm{LF}_{[\mathrm{dB}]^{i}}-3$ Where LF "Loading factor" is the ratio between the Gaussian noise standard deviation versus amplitude full scale.
(DNL)	Differential non linearity	The Differential Non Linearity for an given code i is the difference between the measured step size of code i and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing point and that the transfer function is monotonic.
(INL)	Integral non linearity	The Integral Non Linearity for a given code i is the difference between the measured voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all IINL (i)।.
(TOD)	Output delay	Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next differential analog output voltage change with specified load.
(NPR)	Noise Power Ratio	The NPR is measured to characterize the DAC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise pattern as the input to the DAC under test, the Noise Power Ratio is defined as the ratio of the average noise measured on the shoulder of the notch and inside the notch on the same integration bandwidth.
(VSWR)	Voltage Standing Wave Ratio	The VSWR corresponds to the insertion loss linked to power reflection. For example a VSWR of 1:2 corresponds to a 20 dB return loss (ie. 99% power transmitted and 1% reflected).
(PSS)	Phase Shift Select	The Phase Shift Select function allow to tune the phase of the DSPclock.
(OCDS)	Output Clock Division Select	It allows to divide the DSPclock frequency by the OCDS coded value factor
(NRZ)	Non Return to Zero mode	Non Return to Zero mode on analog output
(RF)	Radio Frequency mode	RF mode on analog output
(RTZ)	Non return to zero	Return to zero mode
(NRTZ)	Narrow Non return to zero	Narrow return to zero mode

5. Functional Description

Figure 5-1. DAC Functional Diagram

Table 5-1. Functions Description

Name	Function	Name	Function
$\mathrm{V}_{\text {CCD }}$	3.3V Digital Power Supply	CLK	In-phase Master clock
$\mathrm{V}_{\text {CCA5 }}$	5.0V Analog Power Supply	CLKN	Inverted phase Master clock
$\mathrm{V}_{\text {CCA3 }}$	3.3V Analog Power Supply	DSP_CK	In-phase Output clock
DGND	Digital Ground	DSP_CKN	Inverted phase Output clock
AGND	Analog ground (for analog supply reference)	PSS[0..2]	Phase shift select
A[9...0]	In-phase digital input Port A	GA	Gain Adjust
A[9..0]N	Inverted phase digital input Port A	MUX	MUX Selection
B[9...0]	In-phase digital input Port B	MODE[0..1]	DAC Mode: NRZ, RTZ, NRTZ, RF
B[9..0]N	Inverted phase digital input Port B	STVF	Setup time Violation flag
C[9...0]	In-phase digital input Port C	HTVF	Hold time Violation flag
C[9..0]N	Inverted phase digital input Port C	IDC_P, IDC_N	Input data check
D[9...0]	In-phase digital input Port D	OCDS[0..1]	Output Clock Division factor Selection (by 4 or 8)
D[9..0]N	Inverted phase digital input Port D	Diode	Diode for temperature monitoring
OUT	In-phase analog output	SYNC/SYNCN	Synchronization signal (Active High)
OUTN	Inverted phase analog output		

EV10DS130AZP

5.1 Multiplexer

Two multiplexer ratio are allowed:

- $4: 1$ which allows operation at full sampling rate (ie. 3 GHz)
- 2:1 which can only be used up to 1.5 GHz sampling rate

Label	Value	Description
MUX	0	$4: 1$ mode
	1	$2: 1$ mode

In 2:1 MUX ratio, the unused data ports (ports C and D) can be left open.

5.2 MODE Function

Label	Value	Description	Default Setting (Not Connected)
MODE[1:0]	00	NRZ mode	
	01	Narrow RTZ (a.k.a. NRTZ) mode	11
	10	RTZ Mode (50\%)	
	11	RF mode	

The MODE function allows choosing between NRZ, NRTZ, RTZ and RF functions. NRZ and narrow RTZ should be chosen for use in $1^{\text {st }}$ Nyquist zone while RTZ should be chosen for use in $2^{\text {nd }}$ and RF for $3^{\text {rd }}$ Nyquist zones.

Theory of operation: see following subsections for time domain waveform of the different modes.
Ideal equations describing max available Pout for frequency domain in the four modes are given hereafter, with $\mathrm{X}=$ normalised output frequency (that is Fout/Fclock, edges of Nyquist zones are then at $X=01 / 213 / 22 \ldots$..

Due to limited bandwidth, an extra term must be added to take in account a first order low pass filter.

- NRZ mode: $\operatorname{Pout}(X)=20^{*} \log _{10}\left(1 k^{*} \operatorname{sinc}\left(k^{*} \pi^{*} X\right) / / 0.893\right)$
where $\operatorname{sinc}(x)=\sin (x) / x$, and $k=1$
- NRTZ mode: $\operatorname{Pout}(X)=20^{*} \log _{10}\left(\mathrm{Ik}^{*} \operatorname{sinc}\left(\mathrm{k}^{*} \pi^{*} X\right) / \mathrm{O} .893\right)$ where $\mathrm{k}=(\mathrm{Tclock}-\mathrm{T} \tau) /$ Tclock and $\mathrm{T} \tau$ is width of reshaping pulse, $\mathrm{T} \tau$ is about 75 ps .
- RTZ mode: Pout $(\mathrm{X})=20^{*} \log _{10}\left(\mathrm{lk}^{*} \operatorname{sinc}\left(\mathrm{k}^{*} \pi^{*} \mathrm{X}\right) / \mathrm{I} 0.893\right)$ where k is the duty cycle of the clock presented at the DAC input, please note that due to phase mismatch in balun used to convert single ended clock to differential clock the first zero may move around the limit of the $4^{\text {th }}$ and the $5^{\text {th }}$ Nyquist zones. Ideally $\mathrm{k}=1 / 2$.
- RF mode:Pout $(x)=20^{*} \log _{10}\left(1 k^{*} \mid \operatorname{sinc}\left(\mathrm{k}^{*} \pi^{\star} X / 2\right)^{*} \sin \left(\mathrm{k}^{*} \pi^{*} X / 2\right) / / 0.893\right)$ where k is as per in NRTZ mode.

As a consequence:

- NRZ mode offers max power for $1^{\text {st }}$ Nyquist operation
- RTZ mode offers slow roll off for $2^{\text {nd }}$ Nyquist or $3^{\text {rd }}$ Nyquist operation
- RF mode offers maximum power over $2^{\text {nd }}$ and $3^{\text {rd }}$ Nyquist operation
- NRTZ mode offers optimum power over full $1^{\text {st }}$ and first half of $2^{\text {nd }}$ Nyquist zones. This is the most relevant in term of performance for operation over $1^{\text {st }}$ and beginning of $2^{\text {nd }}$ Nyquist zone, depending on the sampling rate the zero of transmission moves in the $3^{\text {rd }}$ Nyquist zone from begin to end when sampling rate increases.

Note in the two following figures: Pink line is ideal equation's result, and green line includes a first order 7 GHz cut-off low pass filter to take in account finite bandwidth effect due to die and package.

Figure 5-2. Max Available Pout[dBm] at Nominal Gain vs Fout[GHz] in the Four Output Modes at 3 GSps, over four Nyquist Zones, Computed for $\mathrm{T} \tau=75 \mathrm{ps}$.

NRTZ mode rpw 75ps :
Max Pout [dBm] vs Fout [GHz] at3.0Gsps

RF mode rpw 75ps
Max Pout [dBm] vs Fout [GHz] at3.0Gsps

EV10DS130AZP

Figure 5-3. Max available Pout[dBm] at Nominal Gain vs Fout[GHz] in the Four Output Modes at 2 GSps, over four Nyquist Zones, Computed for $\mathrm{T} \tau=75 \mathrm{ps}$

NRTZ mode rpw 75ps
Max Pout [dBm] vs Fout [GHz] at2.0Gsps

RF mode rpw 75ps
Max Pout [dBm] vs Fout [GHz] at2.0Gsps

5.2.1 NRZ Output Mode

This mode does not allow for operation in the $2^{\text {nd }}$ Nyquist zone because of the Sinx/x notch.
The advantage is that it gives good results at the beginning of the $1^{\text {st }}$ Nyquist zone (less attenuation than in RTZ architecture), it removes the parasitic spur at the clock frequency (in differential).

Figure 5-4. NRZ Timing Diagram

5.2.2 Narrow RTZ Mode

This mode has the following advantages:

- Optimized power in $1^{\text {st }}$ Nyquist zone
- Extended dynamic through elimination of noise on transition edges
- Improved spectral purity
- Trade off between NRZ and RTZ

Figure 5-5. Narrow RTZ Timing Diagram

Note: $\quad T \tau$ is independant of Fclock.

5.2.3 RTZ Mode

The advantage of the RTZ mode is to enable the operation in the $2^{\text {nd }}$ zone but the drawback is clearly to attenuate more the signal in the first Nyquist zone.

Advantages:

- Extended roll off of sinc
- Extended dynamic through elimination of hazardous transitions

Weakness:

- By construction clock spur at Fs.

Figure 5-6. RTZ Timing Diagram

EV10DS130AZP

5.2.4 RF Mode

RF mode is optimal for operation at high input frequency, since the decay with frequency occurs at higher frequency than for RTZ. Unlike NRZ or RTZ modes, RF modes presents notch DC and $2 \mathrm{~N}^{*}$ Fs, and minimum attenuation for Fout $=$ Fs.

Advantages:

- Optimized for $2^{\text {nd }}$ and $3^{\text {rd }}$ Nyquist operation
- Extended dynamic range through elimination of hazardous transitions.
- Clock spur pushed to 2.Fs

Figure 5-7. RF Timing Diagram

Note: The central transition is not hazardous but its elimination allows to push clock spur to 2.Fs $\mathrm{T} \tau$ is independant of Fclock.

5.3 PSS (Phase Shift Select Function)

It is possible to adjust the timings between the sampling clock and the DSP output clock (which frequency is given by the following formula: Sampling clock / $2 N X$ where N is the MUX ratio, X the output clock division factor).

The DSP clock output phase can be tuned over a range of 3.5 input clock cycles (7 steps of half a clock cycle) in addition to the intrinsic propagation delay between the DSP clock (DSP, DSPN) and the sampling clock (CLK, CLKN).

Three bits are provided for the phase shift function: PSS[2:0].
By setting these 3 bits to 0 or 1 , one can add a delay on the DSP clock in order to properly synchronize the input data of the DAC and the sampling clock (the DSP clock should be applied to the FPGA and should be used to clock the DAC digital input data).

Table 5-2. \quad PSS Coding Table

Label	Value	Description
PSS[2:0]	000	No additional delay on DSP clock
	001	0.5 input clock cycle delay on DSP clock
	010	1 input clock cycle delay on DSP clock
	011	1.5 input clock cycle delay on DSP clock
	100	2 input clock cycle delay on DSP clock
	101	2.5 input clock cycle delay on DSP clock
	110	3 input clock cycle delay on DSP clock
	111	3.5 input clock cycle delay on DSP clock

In order to determine how much delay needs to be added on the DSP clock to ensure the synchronization between the input data and the sampling clock within the DAC, the HTVF and STVF bits should be monitored. Refer to Section 5.5 on page 23.

Note: In MUX 4:1 mode the 8 settings are relevant, in MUX 2:1 only the four first settings are relevant since the four last setting will yield exactly the same results.

Figure 5-8. PSS Timing Diagram for 4:1 MUX, OCDS[00]

Figure 5-9. PSS Timing Diagram for 2:1 MUX

EV10DS130AZP

5.4 Output Clock Division Select Function OCDS[1:0]

It is possible to change the DSP clock internal division factor from 1 to 2 and 4 with respect to the sampling clock/2N where N is the MUX ratio. This is possible via the OCDS "Output Clock Division Select" bits.

OCDS is used to obtain a synchronisation clock for the FPGA slow enough to allow the FPGA to operate with no further internal division of this clock, thus its internal phase is determined by the DSP clock phase. This is useful in a system with multiple DACs and multiple FPGAs to guarantee deterministic phase relationship between the FPGAs after a synchronisation of all the DACs.

Table 5-3. OCDS[1:0] Coding Table

Label	Value	Description
OCDS [1:0]	00	DSP clock frequency is equal to the sampling clock divided by 2 N
	01	DSP clock frequency is equal to the sampling clock divided by $2 \mathrm{~N}^{*} 2$
	10	DSP clock frequency is equal to the sampling clock divided by $2 \mathrm{~N}^{*} 4$ not recommended for production, before use please contact hotline-bdc @e2v.com
	11	Not allowed

Figure 5-10. OCDS Timing Diagram for 4:1 MUX

Figure 5-11. OCDS Timing Diagram for 2:1 MUX
 Internal CLK12 is used to clock the Data input A, B into DAC

5.5 Synchronization FPGA-DAC: IDC_P, IDC_N, HTVF and STVF Functions

IDC_P, IDC_N: Input Data check function (LVDS signal).
HTVF: Hold Time Violation Flag. (cmos3.3V signal)
STVF: Setup Time Violation Flag. (cmos3.3V signal)
This signal is toggling at each cycle synchronously with other data bits. This signal should be considered as DAC input data that is toggling at each cycle.

This signal should be generated by the FPGA in order the DAC to check in real-time if the timings between the FPGA and the DAC are correct.

Figure 5-12. IDC Timing vs Data Input

The information on the timings is then given by HTVF, STVF signals (flags).
Table 5-4. HTVF, STVF Coding Table

Label	Value	Description
HTVF	0	SYNCHRO OK
	1	Data Hold time violation detected
STVF	0	SYNCHRO OK
	1	Data Setup time violation detected

During Monitoring STVF indicates setup time of data violation (Low -> OK, High -> Violation), HTVF indicates hold time of data violation (Low -> OK, High -> Violation).

Figure 5-13. FPGA to DAC Synoptic

EV10DS130AZP

Principle of Operation:
The Input Data Check pair (IDC_P, IDC_N) will be sampled three times with half a master clock period shift (the second sample being synchronous with all the data sampling instant), these three samples will be compared, and depending on the results of the comparison a violation may be signalled.

- Violation of setup time -> STVF is high level
- Violation of hold time -> HTVF is high level

In case of violation of timing (setup or hold) the user has two solutions:

- Shift phase in the FPGA PLL (if this functionality is available in FPGA) for changing the internal timing of DATA and Data Check signal inside FPGA.
- Shift the DSP clock timing (Output clock of the DAC which can be used for FPGA synchronization refer to Section 5.3 on page 20), in this case this shift also shift the internal timing of FPGA clock.
Note: When used, it should be routed as the data signals (same layout rules and same length). if not used, it should be driven to an LVDS low or high level.
For further details, refer to application note AN1087.

5.6 DSP Output Clock

The DSP output clock DSP, DSPN is an LVDS signal which is used to synchronize the FPGA generating the digital patterns with the DAC sampling clock.

The DSP clock frequency is a fraction of the sampling clock frequency. The division factor depends on OCDS settings. The DSP clock frequency is equal to (sampling frequency / [$\left.2 \mathrm{~N}^{*} \mathrm{X}\right]$) where N is the MUX ratio and X is the output clock division factor, determined by OCDS[0..1] bits.

For example, in a 4:1 MUX ratio application with a sampling clock of 3 GHz and OCDS set to " 00 " (ie. Factor of 1), the input data rate is 750 MSps and the DSP clock frequency is 375 MHz .
This DSP clock is used in the FPGA to control the digital data sequencing. Its phase can be adjusted using the PSS[2:0] bits (refer to Section 5.3 on page 20) in order to ensure a proper synchronization between the data coming to the DAC and the sampling clock.
The HTVF and STVF bits should be used to check whether the timing between the FPGA and the DAC is correct. HTVF and STVF bits will indicate whether the DAC and FPGA are aligned or not. PSS bits should then be used to shift the DSP clock and thus the input data of the DAC, so that a correct timing is achieved between the FPGA and the DAC.

5.7 OCDS, MUX Combinations Summary

Table 5-5. OCDS, MUX, PSS Combinations Summary

MUX			OCDS	PSS Range	Data Rate	Comments
0	4:1	00	DSP clock division factor 8	0 to $7 /(2 \mathrm{Fs}$) by $1 /(2 \mathrm{Fs})$ steps	Fs/4	Refer to Section 5.4
0		01	DSP clock division factor 16			
0		10	Contact Hotline-BDC			
0		11	Not allowed			
1	2:1	00	DSP clock division factor 4	0 to $7 /(2 \mathrm{Fs}$) by $1 /(2 \mathrm{Fs})$ steps	Fs/2	Refer to Section 5.4
1		01	DSP clock division factor 8			
1		10	Contact Hotline-BDC			
1		11	Not allowed			

Note: Behaviour according to MUX, OCDS and PSS combination is independent of output mode (MODE).

5.8 Synchronization Functions for Multi-DAC Operation

When the output timing needs to be synchronised, a SYNC operation could be generated.
After the application of the SYNC signal the DSP clock from the DAC will stop for a period and after a constant and known time the DSP clock will start up again.

There are two SYNC functions integrated in this DAC:

- a power up reset, which is triggered by the power supplies if the dedicated power up sequence is applied Vccd => Vcca3 => Vcca5;
- External SYNC pulse applied on (SYNC, SYNCN).

The external SYNC is LVDS compatible (same buffer as for the digital input data). It is active high.
Depending on the settings for OCDS, PSS and also the MUX ratio the width of the SYNC pulse must be greater than a certain number of external clock pulses. It is also necessary that the sync pulse is synchronized with the system clock and is an integer number of clock pulses. See application note (ref 1087) for further details. See erratasheet (ref 1125) for SYNC condition of use.

Figure 5-14. Reset Timing Diagram (4:1 MUX)

EV10DS130AZP

Figure 5-15. Reset Timing Diagram (2:1 MUX)

5.9 Gain Adjust GA Function

This function allows to adjust the internal gain of the DAC to cancel the initial gain deviation.
The gain of the DAC can be adjusted by $\pm 11 \%$ by tuning the voltage applied on GA by varying GA potential from 0 to $\mathrm{V}_{\text {ССА }}$.
GA max is given for GA $=0$ and GA min for $\mathrm{GA}=\mathrm{V}_{\text {ССА }}$

5.10 Diode Function

A diode is available to monitor the die junction temperature of the DAC.
For the measurement of die junction temperature, you could use a temperature sensor.
Figure 5-16. Temperature DIODE Implementation

In characterization measurement a current of 1 mA is applied on the DIODE pin. The voltage across the DIODE pin and the DGND pin gives the junction temperature using the intrinsic diode characteristics below Figure 5-17 on page 27.

Figure 5-17. Diode Characteristics for Die Junction Monitoring

6. PIN Description

Figure 6-1. Pinout View fpBGA196 (Top View)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	DGND	B3	B4	B4N	B7	B7N	B9	C9	C7N	C7	C4N	C4	C3	DGND	A
B	B1	B2	B3N	B5	B6	B8	B9N	C9N	C8	C6	C5	C3N	C2	C1	B
C	NC	B1N	B2N	B5N	B6N	B8N	DGND	DGND	C8N	C6N	C5N	C2N	C1N	NC	C
D	NC	B0	BON	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	CON	CO	NC	D
E	A8N	NC	NC	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	NC	NC	D8N	E
F	A8	A9	A9N	VCCD	VCCD	AGND	AGND	AGND	AGND	VCCD	VCCD	D9N	D9	D8	F
G	A6	A6N	A7	A7N	DGND	AGND	AGND	AGND	AGND	DGND	D7N	D7	D6N	D6	G
H	A4	A4N	A5	A5N	DGND	AGND	AGND	AGND	AGND	DGND	D5N	D5	D4N	D4	H
J	A1N	A3	A3N	VCCA3	VCCA3	AGND	AGND	AGND	AGND	VCCA3	VCCA3	D3N	D3	D1N	J
K	A1	A2	A2N	DGND	DGND	AGND	VCCA5	VCCA5	AGND	DGND	DGND	D2N	D2	D1	K
L	NC	A0	AON	DGND	Diode	VCCA5	VCCA5	VCCA5	VCCA5	DGND	MUX	DON	D0	NC	L
M	NC	NC	GA	HTVF	STVF	VCCA5	VCCA5	AGND	AGND	MODEO	MODE1	PSS2	NC	NC	M
N	NC	DSPN	IDC_P	SYNCN	CLKN	AGND	AGND	AGND	AGND	AGND	AGND	OCDS1	OCDS0	NC	N
P	DGND	DSP	IDC_N	SYNC	CLK	AGND	AGND	AGND	OUT	OUTN	AGND	PSSO	PSS1	DGND	P
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Table 6-1. Pinout Table fpBGA196

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
Power Supplies				
$V_{\text {CCA5 }}$	K7, K8, L6, L7, L8, L9, M6, M7	5 V analogue power supplies Referenced to AGND	N/A	
$V_{\text {CCA3 }}$	J4, J5, J10, J11	$3.3 V$ analogue power supply Referenced to AGND	N/A	
$V_{C C D}$	D6, D7, D8, D9, E6, E7, E8, E9, F4, F5, F11	$3.3 V$ digital power supply Referenced to DGND	N/A	

Table 6-1. \quad Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
AGND	F6, F7, F8, F9, G6, G7, G8, G9, H6, H7, H8, H9, J6, J7, J8, J9, K6, K9, M8, M9, N6, N7, N8, N9, N10, N11, P6, P7, P8, P11	Analogue Ground AGND plane should be separated from DGND on the board (the two planes can be connected by 0 ohm resistors)	N/A	
DGND	A1, A14, C7, C8, D4, D5, D10, D11, E4, E5, E10, E11, G5, G10, H5, H10, K4, K5, K10, K11, L4, L10, P1, P14	Digital Ground AGND plane should be separated from DGND on the board (the two planes can be connected by 0 ohm resistors)	N/A	
Clock Signals				
CLK, CLKN	P5, N5	Master sampling clock input (differential) with internal common mode at 2.65 V It should be driven in AC coupling. Equivalent internal differential 100Ω input resistor.	1	
DSP, DSPN	P2, N2	Output clock (in-phase and inverted phase	O	

Table 6-1. \quad Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
Analog Output Signal				
OUT, OUTN	P9, P10	In phase and Inverted phase analogue output signal (differential termination required)	0	
Digital Input Signals				
AO, AON A1, A1N A2, A2N A3, A3N A4, A4N A5, A5N A6, A6N A7, A7N A8, A8N A9, A9N	$\begin{aligned} & \text { L2, L3 } \\ & \text { K1, J1 } \\ & \text { K2, K3 } \\ & \text { J2, J3 } \\ & \text { H1, H2 } \\ & \text { H3, H4 } \\ & \text { G1, G2 } \\ & \text { G3, G4 } \\ & \text { F1, E1 } \\ & \text { F2, F3 } \end{aligned}$	Differential Digital input Port A Data AO, AON is the LSB Data A9, A9N is the MSB	I	
BO, BON B1, B1N B2, B2N B3, B3N B4, B4N B5, B5N B6, B6N B7, B7N B8, B8N B9, B9N	D2, D3 B1, C2 B2, C3 A2, B3 A3, A4 B4, C4 B5, C5 A5, A6 B6, C6 A7, B7	Differential Digital input Port B Data BO, BON is the LSB Data B9, B9N is the MSB	I	

Table 6-1. Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
$\begin{aligned} & \text { C0, C0N } \\ & \text { C1, C1N } \\ & \text { C2, C2N } \\ & \text { C3, C3N } \\ & \text { C4, C4N } \\ & \text { C5, C5N } \\ & \text { C6, C6N } \\ & \text { C7, C7N } \\ & \text { C8, C8N } \\ & \text { C9, C9N } \end{aligned}$	D13, D12 B14, C13 B13, C12 A13, B12 A12, A11 B11, C11 B10, C10 A10, A9 B9, C9 A8, B8	Differential Digital input Port C Data CO, CON is the LSB Data C9, C9N is the MSB	I	
DO, DON D1, D1N D2, D2N D3, D3N D4, D4N D5, D5N D6, D6N D7, D7N D8, D8N D9, D9N	L13, L12 K14, J14 K13, K12 J13, J12 H14, H13 H12, H11 G14, G13 G12, G11 F14, E14 F13, F12	Differential Digital input Port D Data DO, DON is the LSB Data D9, D9N is the MSB	I	
Control Signals				
HTVF	M4	Setup time violation flag	0	

EV10DS130AZP

Table 6-1. \quad Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
STVF	M5	Hold time violation flag	O	
$\begin{aligned} & \text { IDC_P, } \\ & \text { IDC_N } \end{aligned}$	N3, P3	Input data check	1	
$\begin{aligned} & \text { PSS0 } \\ & \text { PSS1 } \\ & \text { PSS2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 12 \\ & \mathrm{P} 13 \\ & \mathrm{M} 12 \end{aligned}$	Phase Shift Select (PSS2 is the MSB)	I	

Table 6-1. Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
MODEO MODE1	$\begin{aligned} & \text { M10 } \\ & \text { M11 } \end{aligned}$	DAC Mode selection bits	1	
MUX	L11	MUX selection	1	
$\begin{aligned} & \text { OCDSO } \\ & \text { OCDS1 } \end{aligned}$	$\begin{aligned} & \mathrm{N} 13 \\ & \mathrm{~N} 12 \end{aligned}$	Output Clock Division Select = these bits allow to select the clock division factor applied on the DSP, DSPN signal.	1	

EV10DS130AZP

Table 6-1. \quad Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
SYNC, SYNCN	P4, N4	In phase and Inverted phase reset signal	I	
GA	M3	Gain adjust	I	
Diode	L5	Diode for die junction temperature monitoring	1	
NC	$\begin{aligned} & \text { C1, C14, D1, D14, E2, E3, } \\ & \text { E12, E13, L1, L14, M1, M2, } \\ & \text { M13, M14, N1, N14 } \end{aligned}$	Not connected to leave floating		

7. Application Information

For further details, please refer to application note 1087.

7.1 Analog Output (OUT/OUTN)

The analog output should be used in differential way as described in the figures below.
If the application requires a single-ended analog output, then a balun is necessary to generate a singleended signal from the differential output of the DAC.

Figure 7-1. Analog Output Differential Termination

Figure 7-2. Analog Output Using a $1 / \sqrt{ } 2$ Balun

Note: The AC coupling capacitors should be chosen as broadband capacitors with a value depending on the application.

7.2 Clock Input (CLK/CLKN)

The DAC input clock (sampling clock) should be entered in differential mode as described in Figure 5-9 on page 21.

Figure 7-3. Clock Input Differential Termination

Note: \quad The buffer is internally pre-polarized to 2.5 V (buffer between $\mathrm{V}_{\mathrm{CC} 5}$ and AGND).
Figure 7-4. Clock Input Differential with Balun

Note: The AC coupling capacitors should be chosen as broadband capacitors with a value depending on the application.

7.3 Digital Data, SYNC and IDC Inputs

LVDS buffers are used for the digital input data, the reset signal (active high) and IDC signal.
They are all internally terminated by $2 \times 50 \Omega$ to ground via a 3.75 pF capacitor.
Figure 7-5. Digital Data, Reset and IDC Input Differential Termination

Notes: 1. In the case when only two ports are used ($2: 1 \mathrm{MUX}$ ratio), then the unused data should be left open (no connect).
2. Data and IDC signals should be routed on board with the same layout rules and the same length than the data.
3. In the case, the SYNC is not used, it is necessary to bias the SYNC to 1.1 V and SYNCN to 1.4 V

7.4 DSP Clock

The DSP, DSPN output clock signals are LVDS compatible.
They have to be terminated via a differential 100Ω termination as described in Figure 5-11 on page 22.
Figure 7-6. DSP Output Differential Termination
DAC Output DSP

7.5 Control Signal Settings

The MUX, MODE, PSS and OCDS control signals use the same static input buffer.
Logic " 1 " $=200 \mathrm{~K} \Omega$ to Ground, or tied to $\mathrm{V}_{\mathrm{CCD}}=3.3 \mathrm{~V}$ or left open
Logic " 0 " $=10 \Omega$ to Ground or Grounded
Figure 7-7. Control Signal Settings

Active Low Level ('0’)

Inactive High Level ('1')

The control signal can be driven by FPGA.
Figure 7-8. Control Signal Settings with FPGA

Logic "1" $>\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{CCD}}=3.3 \mathrm{~V}$
Logic "0" $<\mathrm{V}_{\text {IL }}$ or 0 V

7.6 HTVF and STVF Control Signal

The HTVF and STVF control signals is a output 3.3V CMOS buffer.
These signals could be acquired by FPGA.
Figure 7-9. Control Signal Settings with FPGA

In order to modify the $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ value, pull up and pull down resistances could be used, or a potential divider.

7.7 GA Function Signal

This function allows adjustment of the internal gain of the DAC.
The gain of the DAC can be tuned with applied analog voltage from 0 to $\mathrm{V}_{\text {CCA3 }}$
This analog input signal could be generated by a DAC control by FPGA or microcontroller.
Figure 7-10. Control Signal Settings with GA

7.8 Power Supplies Decoupling and Bypassing

The DAC requires 3 distinct power supplies:
$\mathrm{V}_{\mathrm{CCA5}}=5.0 \mathrm{~V}$ (for the analog core)
$\mathrm{V}_{\mathrm{CCA}}=3.3 \mathrm{~V}$ (for the analog part)
$\mathrm{V}_{\mathrm{CCD}}=3.3 \mathrm{~V}$ (for the digital part)
It is recommended to decouple all power supplies to ground as close as possible to the device balls with 100 pF in parallel to 10 nF capacitors. The minimum number of decoupling pairs of capacitors can be calculated as the minimum number of groups of neighbouring pins.

4 pairs of 100 pF in parallel to 10 nF capacitors are required for the decoupling of $\mathrm{V}_{\text {CCA5 }} .4$ pairs for the $\mathrm{V}_{\text {CCA }}$ is the minimum required and finally, 10 pairs are necessary for $\mathrm{V}_{\mathrm{CCD}}$.

Figure 7-11. Power Supplies Decoupling Scheme

Each power supply has to be bypassed as close as possible to its source or access by 100 nF in parallel to $22 \mu \mathrm{~F}$ capacitors (value depending of DC/DC regulators).

Analog and digital ground plane should be merged.

EV10DS130AZP

7.9 Power Up Sequencing

Power-up sequence:

It is necessary to raise $\mathrm{V}_{\text {CCA5 }}$ power supply within the range 5.20 V up to a recommended maximum of 5.60 V during at least 1 ms at power up. Then the supply voltage has to settle within 500 ms to a steady nominal supply voltage within a range of 4.75 V up to 5.25 V .

A power-up sequence on $\mathrm{V}_{\text {CCA5 }}$ that does not comply with the above recommendation will not compromise the functional operation of the device. Only the noise floor will be affected.

Figure 7-12. Power-up Sequence

The rise time for any of the power supplies ($\mathrm{V}_{\mathrm{CCD}}, \mathrm{V}_{\text {CCA5 }}$ and $\mathrm{V}_{\text {CCA3 }}$) shall be $\leq 10 \mathrm{~ms}$.
At power-up a SYNC pulse is internally and automatically generated when the following sequence is satisfied: $\mathrm{V}_{\text {CCD }}, \mathrm{V}_{\text {CCA3 }}$ and $\mathrm{V}_{\text {CCA5 }}$. To cancel the SYNC pulse at power-up, it is necessary to apply the sequence: $\mathrm{V}_{\text {CCA5 }}, \mathrm{V}_{\text {CCA3 }}, \mathrm{V}_{\text {CCD }}$. $\left(\mathrm{V}_{\text {CCA3 }}\right.$ can not reach 0.5 V until $\mathrm{V}_{\text {CCA }}$ is greater than 4.5 V . $\mathrm{V}_{\text {CCD }}$ can not reach 0.5 V until $\mathrm{V}_{\mathrm{CCA}}$ is greater than 3.0 V). Any other sequence may not have a deterministic SYNC behaviour. See erratasheet (ref 1125) for specific condition of use relative to the SYNC operation.

Relationship between power supplies:
Within the applicable power supplies range, the following relationship shall always be satisfied $\mathrm{V}_{\text {CCA3 }} \geq \mathrm{V}_{\mathrm{CCD}}$, taking into account AGND and DGND planes are merged and power supplies accuracy.

8. Package Information

8.1 fpBGA 196 Outline

8.2 Land Pattern Recommendation

Figure 8-1. Land Pattern Recommendation

TOP VIEW

BOTTOM VIEW

LAND PATTERN RECOMMENDATIONS

A	B	C	D	E	e	b
15.00	15.00	1.21	13.00	13.00	1.00	0.45

9. Thermal Characteristics fpBGA196

9.1 Thermal Resistance

Assumptions:
Still air
Pure conduction
No radiation
Heating zone $=5 \%$ of die surface
Rth Junction - bottom of Balls $=13.3^{\circ} \mathrm{C} / \mathrm{W}$
Rth Junction - board (JEDEC JESD-51-8) $=17.8^{\circ} \mathrm{C} / \mathrm{W}$
Rth Junction - top of case $=14.5^{\circ} \mathrm{C} / \mathrm{W}$
Assumptions:
Heating zone $=5 \%$ of die surface
Still air, JEDEC condition
Rth Junction - ambient (JEDEC) $=32^{\circ} \mathrm{C} / \mathrm{W}$

10. Ordering Information

Table 10-1. Ordering Information

Part Number	Package	Temperature Range	Screening Level	Comments
EVX10DS130AZPY	fpBGA196 RoHS	Ambient	Prototype	
EV10DS130ACZPY	fpBGA196 RoHS	$0^{\circ} \mathrm{C}<\mathrm{Tc}, \mathrm{Tj}<90^{\circ} \mathrm{C}$	Commercial « C » Grade	
EV10DS130AVZPY	fpBGA196 RoHS	$-40^{\circ} \mathrm{C}<\mathrm{Tc}, \mathrm{Tj}<110^{\circ} \mathrm{C}$	Industrial «V » Grade	
EV10DS130AZPY-EB	fpBGA196 RoHS	Ambient	Prototype	Evaluation board
EVX10DS130AZP	fpBGA196	Ambient	Prototype	Contact sales for availability

11. Revision History

This table provides revision history for this document.
Table 11-1. Revision History

Rev. No	Date	Substantive Change(s)
1089 A	December 2013	Initial revision

EV10DS130AZP

Table of Contents

Main Features 1
Performances 1
Applications 2
1 Block Diagram 2
2 Description 2
3 Electrical Characteristics 3
3.1 Absolute Maximum Ratings 3
3.2 Recommended Conditions of Use 4
3.3 Electrical Characteristics 5
3.4 AC Electrical Characteristics 7
3.5 Timing Characteristics and Switching Performances 11
3.6 Explanation of Test Levels 13
3.7 Digital Input Coding Table 13
4 Definition of Terms 14
5 Functional Description 15
5.1 Multiplexer 16
5.2 MODE Function 16
5.3 PSS (Phase Shift Select Function) 20
5.4 Output Clock Division Select Function OCDS[1:0] 22
5.5 Synchronization FPGA-DAC: IDC_P, IDC_N, HTVF and STVF Functions 23
5.6 DSP Output Clock 24
5.7 OCDS, MUX Combinations Summary 25
5.8 Synchronization Functions for Multi-DAC Operation 25
5.9 Gain Adjust GA Function 26
5.10 Diode Function 26
6 PIN Description 28
7 Application Information 35
7.1 Analog Output (OUT/OUTN) 35
7.2 Clock Input (CLK/CLKN) 36
7.3 Digital Data, SYNC and IDC Inputs 37
7.4 DSP Clock 37
7.5 Control Signal Settings 38
7.6 HTVF and STVF Control Signal 38
7.7 GA Function Signal 38
7.8 Power Supplies Decoupling and Bypassing 39
7.9 Power Up Sequencing 40
8 Package Information 41
8.1 fpBGA 196 Outline 41
8.2 Land Pattern Recommendation 42
9 Thermal Characteristics fpBGA196 42
9.1 Thermal Resistance 42
10 Ordering Information 43
11 Revision History 43

How to reach us

Home page: www.e2v.com

Sales offices:

Europe Regional sales office

e2v Itd
106 Waterhouse Lane
Chelmsford Essex CM1 2QU
England
Tel: +44 (0)1245493493
Fax: +44 (0)1245 492492
mailto: enquiries @e2v.com

e2v sas

16 Burospace
F-91572 Bièvres Cedex
France
Tel: +33 (0) 160195500
Fax: +33 (0) 160195529
mailto: enquiries-fr@e2v.com

e2v aerospace and defense inc

765 Sycamore Drive

Milpitas

California 95035
USA
Tel: +1 4087370992
Fax: +1 4087368708
mailto: enquiries-na@e2v.com

```
Americas
e2v inc
5 2 0 \text { White Plains Road}
Suite 450 Tarrytown, NY 10591
USA
Tel: +1 (914) 592 6050 or 1-800-342-5338,
Fax: +1 (914) 592-5148
mailto: enquiries-na@e2v.com
```


Asia Pacific

e2v Itd
11th floor
Onfem Tower
29 Wyndham Street
Central, Hong Kong
Tel: +852 36793648 or +852 36793649
Fax: +852 35831084
mailto: enquiries-ap@e2v.com

Product Contact:
e2v
4 Avenue de Rochepleine
BP 123-38521 Saint-Egrève Cedex
France
Tel: +33 (0)4 76583000

Hotline:

mailto: hotline-bdc@e2v.com

Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.
Users of e2v products are responsible for their own products and applications.
e2v technologies does not assumes liability for application support and assistance.
e2v technologies reserves the right to modify, make corrections, improvements and other changes to its products and services at any time and to discontinue any product without notice. Customers are advised to obtain the latest relevant information prior to placing orders and should verify that such information is current and complete.

EV10DS130AZP

